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ABSTRACT 

Recent results on the linearity of braid groups are extended in two ways. 

We generalize the Lawrence Krammer  representation as well as Kram- 

mer 's  faithfulness proof for this linear representation to Artin groups of 

finite type. 

1. I n t r o d u c t i o n  

Recently, both Bigelow [Bigelow] and Krammer [Krammer] proved that the braid 

groups are linear. The braid group on n + 1 braids is the Artin group of type As. 

This paper extends the result to all Artin groups whose types are finite, that is, 

belong to finite Coxeter groups. 

* This paper was written during a stay of the first author at Caltech. He wants to 
thank the institute for its hospitality. Shortly after we circulated a preprint of 
the present paper, we learned that Digne had obtained similar results. 
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THEOREM 1.1: Every Artin group of finite type is linear. 

Linearity of a group means that it has a faithful linear representation. A standard 

argument reduces the proof to Artin groups whose types are finite and irreducible. 

We focus on the Artin groups of type A, D, E. Since the other Artin groups of 

finite and irreducible type can be embedded in these (cf. [4]), it will suffice for a 

proof of Theorem 1.1 to exhibit a faithful representation for each of the groups A, 

D, E.  The theorem below provides more information about the representation 

found. 

Throughout the paper, we fix a Coxeter matrix M of dimension n, and denote 

by B the Artin group of type M. This means that B is the group generated by 

n elements Sl . . . .  , Sn subject to the relations 

(1) 8 i 8 j 8  i . . . .  8 j S i S  j . . .  
• ~ % y • 

length M,~ length Mij 

for 1 _< i < j _< n. The Coxeter system of type M is denoted by (W, R) with R 

consisting of the images ri of si (i = 1 , . . . ,  n) under the natural homomorphism 

from B to the Coxeter group W. We use the standard facts and some terminology 

of root systems as treated for example in [2]. We shall be working solely with 

Artin groups of finite type, so W is assumed finite, and W has a finite root system 

in ]Rn. We shall denote by al,  • . . ,  an the fundamental roots, corresponding to 

the reflections r l  . . . .  , rn, respectively, and by ~+ the set of positive roots: 

l ~ i ( n  

Then O i s  the disjoint union ofq~+ and 0 -  = - ~ + .  I f M  = A~ (n_> 1), Dn 

(n _> 4), E6, ET, or Es, we say that B is of type A, D, E.  

The coefficients of our representation will be taken in the ring Z[r, t, r - I ,  t-:t], 

and we write V for the free module over that ring with generators xz indexed by 

fl c ,I)+. 

THEOREM 1.2: Let B be an Artin group of type A, D, E. Then, for each 

k E {1 , . . . ,  n} and each 13 c (I)+, there are polynomials Tk,z in Z[r] such that the 

following map on the generators of B determines a representation of B on V: 

sk ~ ak = Tk + tTk, 
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where ~'k is de termined by 

o i f  (ak ,  fl) = 2 

Tk(X~) = rX~--ak i f (ctk , f l )  = 1 
X3 i f  (ak, 3) = 0 
(1 - r2)x3 + rxz+~ k i f  (c~k,/3) = - 1  

and Tk is the linear map on V determined by Tkx3 = Tk,Zxak on the generators 

o f  V.  I f  r is specialized to a real number  ro, 0 < ro < 1, in V Q ]R, we obtain a 

faithful representation o f  B on the restllting free ]R[t, t -1]-module  V 1 with basis 

x~ (3 c ~+). 

The proof of this theorem is based on Krammer ' s  methods. More specifically, 

we generalize the Lawrence Krammer  representation [6, 7] as well as Krammer ' s  

faithfulness results from braid groups to Artin groups corresponding to a spherical 

root system with a single root length. The difficulties in the proof come in the 

proper definition of the Tk,Z. These are determined by Algorithm 3.4. The 

algorithm has been finplemented in the computer algebra package Maple and has 

been used to construct the representations of B for all M of type A, De E,  and 

rank at most 10. In Example 3.8 we verify that,  for type A, the representation 

of Theorem 1.2 is indeed the Lawrence Krammer  representation. 

In Section 2 we recall basic and useful properties of Artin groups, including 

generalizations of some of Krammer ' s  results on braid groups. Section 3 intro- 

duces the representation referred to in Theorem 1.2. Section 4 presents a version 

of Krammer ' s  linearity proof generalized to Artin groups of arbitrary types and 

applies it to the representation of the preceding section. The paper  finishes with 

a few remarks on alternative proofs in Section 5. 

2. B a s i c  p r o p e r t i e s  o f  A r t i n  g r o u p s  

We maintain the notation of the introduction. The Coxeter group W is assumed 

to be finite of type A, D, or E. 

The submonoid of B generated by s l , . . . , S n  is denoted by B +. By < we 

denote the partial order on B + given by x <_ y ¢:~ y C x B  +. The length function 

on W with respect to R, as well as the length function on B with respect to 

{sl . . . .  , Sn}, is denoted by I. 

PROPOSITION 2.1: The Art in  monoid B + satisfies the following properties. 

(i) The relations (I) form a presentation for B + as a monoid  generated by 

S 1 ,  • . . ~ 8n. 
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(ii) B = ( B + ) - I  B +. Consequently,  i f  p is a faithful linear representation of  

the monoid  B + such that  p(si) is invertible, then p ex tends  uniquely to a 

faithful linear representation o f  B .  

(iii) For x, y, z E B + we have zx  <_ zy  ~ x <_ y. 

(iv) There is a uniquely de termined  map  b: W -+ B + satisfying b(uv) = b(u)b(v) 

whenever  u, v E W with l(uv) = l(u) + l(v).  I t  is injective and satisfies 

l(b(u)) = l(u).  Wri te  fl  = b (W)  C B +. 

(v) There is a uniquely de termined  map L: B + -~ ft C_ B + such that,  for each 

x E B +, b - l L ( x )  is the longest e lement  w o f  W with the proper ty  that  

b(w) < x. 

(vi) For x, y E B +, we have n ( x y )  = L ( x L ( y ) ) .  

(vii) The  map B + x ft --+ ~ which takes (x, y) to L ( x y )  defines an action o r B  + 

on f~. 

Proof'. (i), the first part of (ii), (iii), and (iv) go back to [5]; they are also stated 
in [4, 3]. The second part of (ii) is a direct consequence of the first part (observed 

in [6]). 

(v) See [31. 
(vi) This is Corollary 1.23 of [5] (cf. Lemma 2.4 of [3]). 
(vii) As observed in [6], this is immediate from (vi). I 

A subset A of ~+ is called c losed when 

c~,/3 E A,  a + fl E O + ~ c~ + fl E A.  

By C we denote the collection of all closed subsets of ~+. For w E W, set 

(~w : {O: E (~+[ w--lo: E (I)--}. 

Let 13 be the collection of all Ow (w E W). 

On W we have a partial order given by 

(2) v < w ~ 3 u e w  w = vu and l (w) = l(u) + l(v). 

On C, we consider the partial order by inclusion. 

LEMMA 2.2: The members o f / )  have the following properties. 

(i) I f  v, u, w are as in (2), then ~w = q~v U v (~u) .  

(ii) The size o f  Cw equals l(w).  

(iii) For x,  y E W we have ~xy = ¢Px U XCy i f  and only i f  # x  C_ ~zy .  

(iv) The members  of  13 are dosed.  
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(v) I r A  is a closed subset ofO +, then there is a unique maximal  subset A' of  

A of  the form Ow with w E W.  

(vi) There is an isomorphism of  partially ordered sets (W, <_) --~ (:D, C_) given 

byw~--~Ow. 

Proo f  (i) and (ii). See [2]. 

(iii) Clearly, one implication is trivial and the case l(x) = 1 follows from 

the fact that,  for a fundamental reflection r, the set Or is the singleton of the 

corresponding fundamental root. If x E W has length greater than one, there is 

a fundamental reflection r such that u = rx  has length l(x) - 1. Now Ox C_ Oxy 

implies Or UrOu C Or UrOuy. Hence Ou C_ Ouy and Or C_ O~y. By the 

induction hypothesis the former inclusion yields O~y = O~ U uOy. But then 

also, by the latter inclusion and the induction hypothesis, O~y = Or U rOuy --- 

O r U r O u U r u O y  ~- O x U x O y .  

(iv) For/3, • E Ow, we have w-1(/3 + 7) E (O- + ¢P-) N • C_ O- .  

(v) For x, y E W we have x <_ xy  if and only if l(xy) = l(x) + l(y), if and only 

if Oz~ = O~ U x(Oy). By (iii), this is equivalent to Ox C_ O~y. 

Suppose now that  there is no largest member of :D contained in A. Then, by 

(i), there are u E W and i , j  E {1 . . . . .  n} with u < uri and u _< urj for which 

O~r~ C_ A and (Ourj C A such that no member of D containing Our~ U (O~j is a 

subset of A. Then ua~ and uaj  are in A, and, by [2], u < uwij,  where wij is 

the longest element of the subgroup of W generated by r~ and rj.  This is rirj  if 

'ri and rj commute and r jr ir j  if they do not. So, in the former case Ouw~ \ Ow 

consists of uai and u(~j, and in the latter case of uai, uaj ,  and uai + uaj ,  

which belongs to A as A is closed. This means O~wu C_ A, a contradiction with 

(vi) We have l(w) = lOw[ so we can work by induction on / (w) .  Clearly, O1 

is the empty set, so assume l(w) > 1. Then there is a fundamental reflection 

ri such that l(riw) < l(w). Now w - l ( a i )  E O-  so, if ai E Ow ---- Ov, then also 

v - l ( a i )  E O- ,  so l(riv) < /(v). Consequently, Or,w = Or~, so by induction 

riw = riv, establishing w = v. I 

For A a closed subset of • +, write g(A) = x for x E gt such that  Ob-~x is the 

maximal subset of A belonging to :D. In view of Proposition 2.1 and Lemma 2.2, 

the map g: C --+ fl is well defined. 

In the next section we define the linear representation for B of type A, D, E.  

In the subsequent section, we use this representation to define an action of B + 

on C that makes the map g equivariant with the action on ft of Proposition 2.1 

(vii). 
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3. T h e  r e p r e s e n t a t i o n  fo r  t y p e s  A,  D,  E 

In this section, we continue to assume tha t  the type  M is A, D, or E.  This  

has the consequences tha t  (I) + is finite and tha t  M can be viewed as a graph on 

{1 . . . .  , n} with adjacency k ~ l given by (r~rt) 3 -- 1, or, equivalently, (C~k, c~t) = 

--1. Nonadjacency of k and I corresponds to (rkr~) ~ = 1 and to ( a n , a t )  -- 0. 

We shall first describe the ' t  = 0 pa r t '  of the linear representat ion of the Ar t in  

monoid  B +. Recall the Z[r  +1, t±~]-module V and the linear t ransformat ions  rk 

introduced in Theorem 1.2. Denote  by V0 the free Z[r] -module  with generators  

xz  (/3 ~ O+). Thus,  V0 is contained in V, and V is obta ined from V0 by extending 

scalars t o  Z [ r  ±1, t± l ] .  

LEMMA 3.1: There  is a monoid homomorph i sm  B + --+ End(Vo) determined by 

si ~ Ti (i = 1 , . . . , n ) .  

Proof: We must  show that ,  if i and j are not adjacent,  then viv a -- vjvi and, 

if they  are adjacent,  then TiVj'ri ---- ~-j'rivj. We evaluate  the expressions on each 

xz and show they are equal. We begin with the case in which fl = a i  or a j .  

To be specific, let /3 = c~i. Suppose first t ha t  i and j are not adjacent.  Then  

7ix~, = 0 and ~-jxa~ = x ~ .  Now v j r i x ~  = O, TiTjXai - ~  T i X c ~  i - ~  0 and the result  

holds. Suppose next  t ha t  i and j are adjacent.  Then  v ix~  = ~-jxa¢ = 0 and 

r jx~,  = (1 - r2)xa~ + rxa~+~.  Now 

~rj~- ix .~  = r~-j(O) = o 

and 

= r2TjXc~j : O. 

We now divide the verifications into the various cases depending on the inner 

products  (c~i,/3) and ((~j,/3). The  table below describes the images of the vectors  

x z under  7-/and Tj. 

( ~ , ~ )  

0 

1 

1 

1 

- 1  

- 1  

0 xz 

t r x ~ - a i  

- 1  r x z _ ~  i 

0 r x ~ - ~  i 
0 (1 - r2)x/3 + rx~+a~ 

- 1  (1 - r2)xz  + rxz+a~ 

7-ixz ~-jxz 

X/3 

r X ~ - a j  

(1 - r2)x~ + rx~+a~ 
x~ 

x z  
(1 - r2)x~ + r x ~ + ~  
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F i r s t  assume t h a t  ((~i, a j )  = 0. The  compu ta t i ons  verifying rivj = vjvi are 

s t ra ight forward .  We summar ize  the  resul ts  in the  following table .  

(~,~) (~,~) 
0 0 
1 1 

1 - 1  

1 0 

- 1  0 
- 1  - 1  

~=iwjxz = Tj~:iX z 
x~ 

r2 X ~-o~i -o:j 
r(1 - r2)xz_~,  + r2x/~+~j_~ 

rX/3-a~ 

(1 - r~)xz  + rxz+~ ~ 
(1 - 'r2)2x~ + r (1  - r2) (xz+.~  + x~+a~) + r2x~+.~+a~ 

We d e m o n s t r a t e  how to derive these expressions by checking the  th i rd  line: 

"rirjxz = wi((1 - r 2 ) x z  + rxz+~j)  = (1 - r2)rx/3_~ + r2x~+(~j_a~. 

In the  o ther  order,  

vjrix/3 = vj(rx/3_a~) = (1 - r2)rx~_a~ -4- r2x/3+c~j-a~. 

Recal l  (ai, e j )  = 0 and so (/3 - ~ i , ~ j )  = (/3,~j) = - 1 .  

Suppose  then  t ha t  (a i ,  c~j) = - 1 .  The  same s i tua t ion  occurs except  the  com- 

pu t a t i ons  are  somet imes  longer and  one case does not  occur.  This  is the  case 

where (a~,/3) = (my,/3) = - 1 .  For t hen /3  + a~ is also a root ,  and  (/3 + a~, a j )  = 

- 1  - 1 = - 2 .  This  means  ~ + a i  = - a j  a n d / 3  is not  a posi t ive  root .  The  tab le  

is as follows. 

0 0 

1 1 

1 - 1  

1 0 

- 1  0 

- 1  - 1  

virjT~x z = vjT~vjxz 
x~ 

0 
r (1  - r 2 ) x ~ _ a ~  + r2x~ 

r2x~-a~-a  s 
(1 - r2)x/3 + (1 - r 2 ) r x ~ + ~  + r2xf~+~,+~j 

does not  occur 

As above,  these calcula t ions  are routine.  Note  tha t ,  in the  second line, /3 = 

a i  + c U. We do the second f rom last  case in detai l .  Here, (c~i, fl) = - 1  and  

( ~ j , / 3 )  = 0: 

vjT~ivjxz =v jv ixz  = 7j((1 - r2)x~ + rxz+a~) 

=(1  - r2)xz  + r(1 - r 2 ) x z + a ~  + r2xz+a~+a~. 
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In the other  order, 

~rivyrixz =viTj( (1 -- r2)xz  + r x z + ~ )  

=Ti((1 - r2)x~ + r(1 - r2)x~+a, + rrx~+a,+aj) 

----(1 - r2)2xz + (1 - r2)rxz+a~ + r2(1 - r2)xz + r2x~+,~+ai  

=(1  - r2)x~ + r(1 - r2)x~+a~ + r2x~+a~+aj .  | 

We next  s tudy  the possibilities for the pa ramete r s  Tk,z occurring in Theo rem 

1.2. Recall t ha t  there we defined a k  = Tk-~ tTk, where Tkxz  = Tk,zx~ k . We shall 

introduce Tk,z as Laurent  polynomials ,  i.e., as elements  of Z[r, r - l ] ,  but  it will 

tu rn  out tha t  these actual ly  belong to  Z[r] (cf. Corol lary 3.7). 

PROPOSITION 3.2: Set Ti,a, = r 4 for all i ~ {1 . . . . .  n}.  For ai ~-+ r i+tTi  to define 

a linear representation of  the group B on V,  it is necessary and sufficient that  

the equations in Table 1 are satisfied for each k, l = 1 . . . . .  n and each/~ ~ ~+. 

Proo~ The ¢k should satisfy the relat ions (1) for Sk. Subst i tu t ing Vk + tTk for 

sk, we find relat ions for the  coefficients of t i with i = 0, 1, 2, 3. The  constant  

pa r t  involves only the rk. I t  follows from L e m m a  3.1 tha t  these equations are 

satisfied. We shall derive all of the  equat ions of Table 1 except for (16) from the 

t-l inear par t  and the remaining one f rom the t -quadrat ic  par t  of the relations. 

The  coefficients of t lead to 

(3) T k T l = T k  and T ~ ' k = T t  i f ( a k ,  a t ) = 0 ,  

(4) rtTkTt + TtrkTt + TtvkTt = rkTtvk + Tkrtvk + rkrtTk if (ak, at) = --1. 

We focus on the consequences of these equat ions for the Tk,~. Consider the 

case where (ak, cq) = 0. Then  

(ak, 9) 
0 
1 

- 1  

r k x z  Ttrk = T~ 

x~ no condit ion 

rxB-~  k rTt,~-~k = Tz,~ 
(1 - r2)xz  + rXz+ak (1 - r2)Tl,z + rTl,z+ak = Tz,Z 

Both  equations say the same, namely, 

(5) Tl,~ = rTl ,~- .k  if (ak,/3) = 1 and (ak,  al) = O. 

Next,  we assume (ak, al)  = - 1 .  A pract ical  rule is 

rkvlX~ k -= ~'k((1 -- r2)xak + rxak+~,) = r2xa~. 
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We distinguish cases according to the values of (ak,/3) and ((~t,/3). Since each 

inner product for distinct roots is one of 1, 0, -I, there are six cases to consider up 

to symmetry (interchange of k and l). However, the case ((~k,/3) ---- ((~z,/3) ---- --I 

does not occur. For then (v'k/3, c~) = -2, a contradiction with the fact that both 

ak/3 and at are positive roots. 

For the sake of brevity, let us denote the images of the left hand side and the 

right hand side of (4) on x~ by LHS and RHS, respectively. 

Case ((~k,/3) = (at,/3) = i. Then (ak/3, al) = (/3 - ak, ~l) = 2, so/3 = ak + az. 

Now 

R H S  :TkTITkX/~ -[- TkTlTkX ~ + 7-kTITkx/3 

=rTkTlx~, + rTkrlx~, + Tk,ak+c~lT"kTIXak 

~-TI,az rTkxal + Tk,ak +al r2xal 

=Tl,alr(1 - r2)xa, + Tl,azr2xak+at + Tk,ak+alr~xal 

=(Tl,~lr(1 -- r 2) + Tk,ak+~lr2)xal + Tl,alr2xak+at. 

Comparison with the same expression but then I and k interchanged yields LHS.  
This leads to the following two equations: 

(6) Tk,.k +a, =Tl,al (r - -  r-l), 

The second one, and homogeneity of the presentation relations, allow us to scale 

the Ti so that  

(7) r i , ~  : r 4. 

Case (ak,/3) = (al,/3) = 0. This gives 

R H S  =rkTtxz + Tkx~ + ~-kvtTkx 9 

=Tt.~7-kx~ t + Tk,~x~k + Tk,/3T~3-tx~ k 

=T~,z(1 - r~)x., + T~,zrx~,+~ + Ta,Zx~ + T~.~r~x~, 

=(Tk,zr ~ + Tt,Z(1 - r2) )x~ + Tt,/~rx~,+.~ + Tk,Zx. ~ 

and L H S  can be obtained from the above by interchanging the indices k and I. 

Comparison of each of the coefficients of x ~ ,  x a , + ~ ,  x~, gives 

(8) Tk,z = Tt,;~. 

Since the other cases come down to similar computations, we only list the results. 
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Case (ak,/3) = 0, (at,/3) = - 1 .  Then  

(9) TIc,Z+al -=r-lTl ,Z Tk , z ( r  -1  - r) ,  

(10) Tt,z+~,+~k =Tk ,z  -- r - l ( 1  -- r2)Tt ,z+~.  

Case (ak,/3) = 0, (at,/3) = 1. Here 

(11) Tk,~ =Tt ,~ -a , - ak  + (r 2 - 1 ) r - l T a , ~ - a , ,  

(12) Tt,z = r T k , ~ - a , .  

Case (ak, 3) = 1, (at,/3) = - 1 .  Now 

(13) Tl,z = r - l T k , ~ - a k  - 

(14) Tt,/3+,, =r  Tk,z,  

(15) Tk,~+,,  = T t , z - , k  - (r -1  -- r )Tk,z .  

(r -1 - r ) T t , z - a k ,  

Table 1. Equat ions for Tk,Z 

Isr. J. Math. 

Tk,Z condition reference 

0 /3 -- c~t and k 7~ l (16) 
r 4 /3 = a k  ( 7 )  

r 5 - r 3 /3 ---- a k + oz/ (6) 

rTk , z -a ,  (at,/3) = 1 and (ak, at)  ---- 0 (5) 
T t , z - a k - ~  + (r -- r-1)Tk,/3_a,  (ozk,/3) = 0 and (at,/3) = 1 (11) 

and (ak, at)  = - 1  
r - lT l ,~_ .~  ÷ (r - r - 1 ) T k , ~ _ . ,  (ak,/3) = - 1  and (at,/3) = 1 (13) 

and (ak, at)  = - 1  
r T l , ~ - . k  (ak,/3) = 1 and (at,/3) = 0 (12) 

and (ak, at)  = - 1  

We see that ,  in order to be a representation, the Ti,Z have to satisfy the equa- 

tions (5)-(15). In the t-quadrat ic  s tudy below, we shall also derive the equation 

(16). The  resulting system (5) (16) is superfluous in that ,  when the root  in the 

index of the left hand side of (9) is set to 7, we obtain (13) for 7 instead of/3. 

Similarly, (10) is equivalent to (1I),  while (14) is equivalent to (12) and (15) is 

equivalent to (11). 

We also contend tha t  the equations in (8) are consequences of the other  re- 

lations from Table 1. The  equation says tha t  Tk,5 = Tt,~ whenever (ak,/3) = 

(at,/3) = 0 and k ,- I. We prove this by induction on the height of/3. The  initial 
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case of ~ having height 1 is direct from (16). Suppose therefore ht(/3) > 1. There  

exists m e { 1 , . . . ,  n} such tha t  (am, /3 )  = 1. If  (am,  a k )  = (am,  at)  = 0, then  

(5) applies to bo th  sides, giving Tk,Z = r T k , z - ~ m  = r T l , z - ~ m  = Tt,~, where the 

middle s tep uses the induction hypothesis.  

Therefore,  interchanging k and 1 if necessary, we may  assume tha t  1 ~ m, 

whence k 7c m (as the Dynkin  d iag ram contains no triangles).  Now 5 = /~ - 

a m  - al  C ~ +  and (c~k, 5) = 1, so (5) gives Tm,~ = rTm,~_o~,  which, by induction 

on height, is equal  to rT i , 5_~  (as (c~l, ~ - a k )  = (am,  5 - ak)  = 0). Notice tha t  

/~ has height a t  least 3. Consequently,  

Tk,z  = ' r rk , z -~m by (5) 

=rTl ,~ -ak  + (r  2 - 1)Tk,~ by (11) 

=Tm,~ + (r 2 - 1)Tk,~ by the above 

=T.~,d + (r - r - 1 ) T t 3 _ a ~  by (12) 

=Tt,/3 by (11). 

We have established tha t  the equations of Table 1 represent  a sys tem of equa- 

tions equivalent to (3), (4), and (16). 

We now consider the coefficients of t 2 and of t a in the equations (1) for ai.  We 

claim that ,  given (5)-(15) ,  a necessary condit ion for the corresponding equat ions 

to hold is 

(16) Tk ,~  = O i f  k ¢ l. 

To see this, note that ,  if k 7C l, the coefficient of t ~ gives TkTt = TiTk which, 

applied to xa l ,  yields (16). If  k ,.o l, note 

T k n x ~ k  = Tk((1 - r 2 ) x ~ k  + r x ~ + ~ )  = (r4(1  - r 2) + r T ~ , ~ , + ~ ) x ~  = 0 

as Tk,a~ +a I = r 5 -- r 3. Now use the act ion of 

TtTkTl + 71TkTl + TtTkrl  = Tkr tTk  + rkT tTk  + TkT~rk 

on x~,. We see only the middle t e rms  do not vanish because of the relat ion above 

and so 

r 4 T k , ~  r lx~k = Tk,~L Tl,ak rkxa~. 

By considering the coefficient of  x ~ ,  which occurs only on the left hand side, we 

see tha t  (16) holds. 

A consequence of this is tha t  TiT j  = 0 if i ¢ j .  Now all the equat ions for the 

t 2 and t 3 coefficients are easily satisfied. In the noncommut ing  case of t 2, the 
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first terms on either side are 0 by the relation above and the other  terms are 0 

as T~Tk = O. 

It  remains to establish tha t  the matrices ak are invertible. To prove this, we 

observe tha t  the linear t ransformat ion a 2 + (r 2 - 1)ak -- r 2 maps V onto the 

submodule spanned by xa k and tha t  the image of x~ k under ak is tr4x~k. In 

fact, the determinant  of ak equals (-1)Ctr 4+2c, where c is the number of positive 

roots /3  such tha t  (ak,/3) = - 1 .  | 

For a positive root /3 ,  we write ht(/3) to denote its height, tha t  is, the  sum of 

its coefficients with respect to the cq. Also, Supp(~) is the set of k E {1 , . . .  ,n} 

such tha t  the coefficient of ak in/3 is nonzero. 

COROLLARY 3.3: I f  the Tk,~ 6 Z[r, r -I]  satisfy the equations in Table 1, then 

these obey the following rules, where ht(/3) stands for the height of~3. 

(i) If  (ak,/3) = (hi,/3) = 0 and (ak, at)  = --1, then Tk,z = Tt,/~. 

(ii) If  (ak,/3) = 1, then Tk3 = rht(Z)+l(r 2 -- 1). 

(iii) The degree of Tk3 equals 3 + ht(/3) whenever k E Supp(/3). 

(iv) Tk,~ is a multiple of r 2 - 1 whenever/3 # ak. 

(v) Tk,/~ = 0 whenever k ~ Supp(/3). 

Proo~ (i) The equations are necessary as they appeared under (8). 

(ii) Use induction on ht(/3). If ht(/3) = 2, the equation coincides with (6). If 

ht(~)  > 2, then either (5) or (12) applies. As ht(/3) >_ 2 there must  be some l 

for which ( / 3 - - a k , a l )  = 1. Now (/3, a t ) -  (ak, a l )  = 1. If (ak, at)  = 0, then 

(/9, cq) = 1 and (5) applies; if (ak, at)  = - 1 ,  then (8, at)  = 0 and (12) applies. 

(iii) and (iv) are obvious. 

(v) follows from (16) by use of (5) and (13). Observe that ,  if k ¢ Supp(/3) and 

(hi,/3) = 1 for some l ,,~ k, then l ~ Supp(/~ - at) .  | 

The  proposit ion enables us to describe an algori thm computing the Tk,Z, and 

which shows that  there is at most  one solution. 

Algorithm 3.4: The  Laurent  polynomials Tk,z of Theorem 1.2 can be computed  

as follows by using Table 1. 

(i) If k ~ Supp(/3), then Tk,/~ = 0. Otherwise, proceed with the next  steps. 

(ii) If ht(/3) _< 2, equations (7) and (6), tha t  is, the second and third lines of 

Table 1, determine Tk,~. From now on, assume ht(/3) > 2. We proceed by 

recursion, expressing Tk,Z in Z[r, r-1]-l inear combinations of Tm,~'s with 

ht(7)  < ht(/3). 
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(iii) I f  (ak,/3) = 1, set Tk,Z = rht(Z)+l(r  2 -- 1). F rom now on, assume (ak,/3) is 

0 or - 1 .  

(iv) Search for an l C { 1 , . . . ,  n} such tha t  (ak,  at)  = 0 (so k and l are nonad- 

jacent  in M )  and (at,/~) = 1 (so/3 - at  C ~) .  If  such an l exists, then  (5) 

expresses Tk,z as a mult iple  of Tk,z-a, .  

(v) So, suppose there is no such 1. We k n o w / 3 -  ak  is not a root  as (ak,/3) ~ 1. 

There  is an 1 for which /3 - at is a root  (so (at,/3) = 1). We must  have 

(ak,  at)  = - 1  (so k and l are adjacent  in M) .  By our choice, (ak,/3) = 0 

or --1. Now the identities (11) or (13) express Tk,z as a linear combinat ion  

of T~.Z_~, and some Tt,.~ with ht('~) < ht(/3). 

This  ends the a lgori thm. Observe tha t  all lines of Table 1 have been used (with 

(16) in (i) and (12) implici t ly in (iv)). 

The  a lgor i thm computes  a Laurent  polynomial  for each k,/3 based on Table 

1, showing tha t  there is a t  most  one solution to the set of equations.  The  next  

result shows tha t  the computed  Laurent  polynomials  do indeed give a solution. 

PROPOSITION 3.5: The equations of Table 1 have a unique solution. 

Proo£" We need to show tha t  the Laurent  polynomials  Tk,Z defined by Algor i thm 

3.4 satisfy the equat ions of Table 1. By Step (i), (16) is satisfied. By Step (ii), 

(7) and (6) are satisfied if/3 has height 1 or 2. We use induction on ht(/3), the 

height of/3, and assume ht(/3) > 3. Suppose first (ak,/3) = 1. Notice in (5) tha t  

( / 3 , / 3 - a l )  = 1 as (at,/3) = 1 and in (12) tha t  (/3, /3 -- ak)  = 1 as here (/3, ak)  = 1. 

This  means  the relevant t e rms  are defined by Step (iii) which depends only on 

the heights. As ht(/3) = ht(/3 - a j )  + 1 the equations are correct: here Tk,~ = 
rht(/3)+l(r 2 -- 1), so if (at,/3) = 1, we have Tk ,Z-~  = rh t (Z-a l )+ l ( r  2 -- 1) whence 

Tk,z = rTk.z_~, giving (5). The  proof  of (12) is similar. This  shows (12) holds 

and (5) holds if (ak,  fl) = 1. 

We now suppose tha t  (ak,  fl) is 0 or - 1 .  We first check (5). If  this applies, 

the value Tk,/3 is de termined in Step (iv) of the a lgori thm, and we are really 

checking the value did not depend on the choice of l. Suppose there is an l '  

for which (al,/3) = (at,,/3) = 1 and (az,ak)  = ( a t , , a k )  = 0. Then  by our 

definition Tk,z = rTk,z_~,, and we must  show tha t  Tk,Z = rTk,z-a, .  If  1 ~ l ' ,  

then  (/3 - ak,  a t )  = 2 and /3  = ak + at  has height 2. This  means  we can assume 

l 96 l ' .  Then  ( / 3 - a l ,  al, ) = 1 and  ( / 3 - a t , ,  a t )  = 1. In  par t icular ,  ~ - a z - a i ,  is also 

a root.  Now apply  (5) and the induction hypothesis  to see Tk.Z_~, = rTk.~_~,_~z, 

and Tk,z-a,, = rTz-~L-at, ,  and so Tk,z = rTk ,~-~ = rTk,z_~,,. This shows tha t  

(5) holds. 
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We have yet to check (11) and (13). Suppose first Tk,z was chosen by Step 

(iv). In this case there are l, l' with (/3, cq) = (/~,at,) = 1, ( a~ ,a t )  = - 1  and 

(ak ,a t , )  ---- 0. Here Ta,~ is determined by Step (iv) of the algorithm, Ta,/~ = 

rTk,z_~,.  We must have 1 ¢ l', for if 1 ~ l', we would again be in the height 2 

case. In order to obtain (11) we must  show tha t  if (ha, b) = 0, then 

Observe tha t  (/3 - at,, at)  = 1 and (ak, at)  = - 1  and so, by (11), 

rTk,Z-al, = rTt,Z-a,,-al-ak + r(r -- r-1)Tk,~_al,_al. 

Now, as (at,  at ,)  = 0, we can use (5) to obtain T t , z - a k - ~  = rTt,z-a,-~k-a~, and 

Tk,z-~t = rTk,~-a~-~,, and so the equations are satisfied. In order to satisfy 

(13) when (/3, ak) = - 1 ,  we need to show 

rTk,Z- .~,  = r - l T t , ~ - . ~  + (r - r - ~ ) T k , ~ _ . , .  

Again express these terms using (5) subtract ing cq, in each of the expressions to 

get equality. 

We may  now assume tha t  Tk,z was chosen in Step (v). If 1 is the one chosen 

in Step (v), then Tk,z was chosen to satisfy (11) or (13), whichever it is. If not,  

there  is another  index l' which was used in Step (v) to define Tk,Z. For these 

the conditions are ( ~ , c q ) =  (/3, a t , ) =  1 and (ak, c q ) =  (ak, a t , ) =  --1. Clearly 

l ¢ l', for otherwise there would be a triangle in the Dynkin diagram M.  Now 

(cq , , /3 -  ak --cq) = 2 and so/3 has height 3. Now the necessary conditions follow 

as the terms are of height 1 or 2 in the expression 

Tt,~-ak-a~ + (r + ?~-l)Tk,~_al = Tl,,~_c~k_c~ H -~- (1" -~- r-1)Tk,/J_cxt, 

for (11) and of height 2 for (13). 

Now all the equations in Table 1 have been shown to hold. 

COROLLARY 3.6: The solution Ta,~ of Proposition 3.5 is computable via expo- 

nents  ak,~, ck,~, dk,~ as follows. Tk,~ = 0 if k ~ Supp(~) which amounts  to ak,~, 

ca,o, dk,~ being zero. Moreover, Tk,~ = r 4 if/3 = ak. Otherwise, 

(17) 
rh t (~ )  + l ( r  2 --  1) 

1 
-- ( 1  - r - a * , ~  ) 

(1 - r-C~,~)(1 - r -dk,~) 

i f  (ak , /3)  = 1 
i f  (ak, /3)  = 0 
i f  (ak ,  /3) = - 1  
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wi th  

ak,/3 :ak , /3 -a~  

ak,/3 =al,/3--c*L--c~k + 2 

{ck,/3, dk,/3} ={ck, /3-a , ,  dk,~-a,  } 

{ck,/3, dk,/3} ={ak . /3-a , ,  ct,/3-a, + 2} 

{ ck,/3, dk,/3 } = { al,/3, am,~3} 

i f ( a l , / 3 )  = 1 and  k ¢ l, 

i f  (at , /3)  = 1 and  k ~ l, 

i f  (at , /3) = 1 and  k ~ l, 

i f  (oq, /3) = 1, dt,/3-a, = ak,/3-~t, 

and  k ~ l 

i~ (az , /3 )  = o, (a .~ , /3 )  = o, 

and  l ~ k ~ m # l .  

Proof:  The  p roo f  is similar  to t h a t  of P ropos i t i on  3.2. I t  runs  by  induc t ion  on 

the  height  of /3 .  The  initial cases and  the  case where  (c~k,/3) = 1 follow di rec t ly  

f rom Propos i t i on  3.2 and  Coro l la ry  3.3. 

Suppose  (ak,/3) = 0. Let  l be such t h a t  (at , /3) = 1. If  1 7~ k, then  (5) applies, 

which,  in view of the  induc t ion  hypothes i s  and  (ak, /3 - cq) = 0, gives 

Tk,/3 = rTk,/3-a~ = rht(Z)+l(r  2 -- 1)(1 -- r -ak,~-"~ ), 

prov ing  the  first rule. I f  1 ~ k, then  (11) applies,  which, in view of  the  induc t ion  

hypothes i s  and  (ak, /3 - a l )  = 1 and  (at , /3 - c~k - a t )  = O, gives 

Tk,/3 = Tl,/3--ak--al -t- ( r -- r - 1 )  Tk,/3_al 

- - - - rht( /3)-I  ( r 2  --  1)(1 - r -a ' , ~ -~k -~ l  ) + rht( /3)  ( r  2 - -  1)(r  - r -1 )  

=rh t ( /3) - l ( r2  -- 1)(1 -- r -a ' , z - "k - "~  + r 2 -- 1) 

=rht ( /3)+l(r2  -- 1)(1 - r - a " ~ - " k - " * - 2 ) ,  

p rov ing  the  second rule. 

Next  suppose  (ak,/3) = - 1 .  Let  l be such t h a t  (al , /3)  = 1. I f  k ~ l, t hen  the  

th i rd  rule follows f rom (5). 

I f  k ~ l, t hen  (at , /3  - a t )  = - 1  and  (ak, /3  -- a l )  = 0, so (13), induc t ion  and  

ak,/3-al = dl.~-c~ give 

Tk,/3 =r-lT~,/3- . ,  + (r - r-~ )Tk,z_.~ 

=rht( /3)+l(r  2 -- 1)(1 -- r -a~ 'z -" l  ) ((1 -- r - C " z - ~ ) r  -2  + (1 -- 7"-2)) 

=rht(/3)+l (r  2 -- 1)(1 -- r -a~ , z -" l  )(1 -- r - c z , ' -~1-2) ,  

as required  for the four th  rule. 

In  order  to  prove the  last  rule of the  corollary,  suppose  (ak,/3) = - 1  and  let 

l, m E Supp(/3) be as indicated.  Let  j be such t h a t  (a j , /3)  = 1. I f j  is nonad jacen t  
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to each of k, l, m, then the rule follows easily from (5). Therefore, we may and 

shall assume that  each index j with (aj,/3) = 1 is adjacent to (at least and hence 

exactly) one of k, l, m. By analysis of the root system of type M, it follows that  

we can always choose j to be adjacent with either l or m. Thus, without loss of 

generality, assume that  there exists an index j with ((~j,/3) = 1 and j ~ m. Then 

j ¢ k, l as the Coxeter graph is a tree. According to (5), (13), and the induction 

hypothesis, we have 

Tk,z = r T k , z - a j  = Tm,z -a~-am + (r 2 - 1)Tk , z -a j -am 

=rht(~)- t  (r 2 -- 1)(1 -- r-a~'~-~J . . . .  )(1 -- r-ak'~-~J -~m ) 

+ rht(~)-t (r 2 - 1)(1 - r -a~ '~-~,  . . . .  )(r  2 - 1) 

= r  ht(~)+l (r 2 - 1)(1 - r - ~ ' ~ - ~ - " ~  -2)(1 - r - a ~ ' ~ - ~ ¢ - ~  ). 

By the second rule a j , z - ~ - a ~  + 2 = am,13 , and by Corollary 3.30) and the first 

rule, a k , ~ - a ~ - ~  = al,~-a~-~m = at,~-~j = al,~, whence the last rule. | 

We are now ready to prove the first part  of Theorem 1.2. 

COROLLARY 3.7: The Laurent polynomials  Tk,z o f  Proposit ion 3.5 belong to 

rE[r]. In particular, they  are polynomials ,  and the T~,/~ determine a representa- 

tion o r b  on V as claimed in Theorem 1.2. 

Proo£" By induction on ht(/3), the rules for ak,/3, ck,z, dk,13 of Corollary 3.6 

readily imply that  ak,z _< ht(b) and ck,z + dk,z <_ ht(b). Hence the first part  of 

the corollary. For the second part,  combine the above with Propositions 3.2 and 

3.5. | 

Example  3.8: The An case. Then ck,~ = dk,~ ---- 0 and ak,1~ = 2 if k E Supp(3). 

Note that  the last three lines of the corollary do not occur. Our representation 

can be obtained from the Lawrence Krammer  representation as described in [6] 

by a diagonal transformation with respect to the basis x/~ (/3 E ~+) ,  and by 

replacing q by r 2 .  As a result, the involutory automorphism of the diagram An 

can be realized as a linear transformation leaving invariant the basis (compare 

with Remark 5.1 of [6]). To be more specific, the roots in the An case are of 

the form a i + c ~ i + l + . . . + a j _ l  for 1 < i < j _< n. For such a r o o t  /3, set 

x i j  = (r -1) i+Jxz .  These are the elements appearing in [6]. In the action of ak 

on this basis r always appears to an even power. Replacing r :  by q gives the 

action in [6]. 
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Example 3.9: The Dn case. For a given root in Dn, let 11 be the number of 

coefficients 1 in the expression of/3 as a linear combination of the ai ,  and let 12 

be the number of coefficients 2. These are the only nonzero coefficients which 

can occur for Dn. In the case (ak,/3) = - 1 ,  we have {ck,~, dk,~} = {2, 2/2 + 2}. 

Assume now that  (ak,/3) = 0 and k e Supp(/3). If ak has coefficient 2 in/3 or 

k is the end node of a short branch of the Coxeter diagram, then ak,~ = 4; if 

k is the end node of the long branch (possibly after removing nodes with zero 

coefficients), then ak,z = 212 + 2; otherwise ak,z = 2. It  is straightforward to 

check that  the relations of Table 1 all hold. 

4. F a i t h f u l n e s s  o f  t h e  r e p r e s e n t a t i o n  

We now combine the representation of Section 3 with the root system knowledge 

of Section 2. Our arguments are straightforward generalizations of Krammer ' s  

method, but we give details anyway for the reader's convenience. 

Recall that  V is the free module over Z[t 4-1, r :t:1] generated by xz for/3 ranging 

over the positive roots. In Corollary 3.7 we established the first part  of Theorem 

1.2. In this section we prove the second part.  To this end, we specialize r to 

a real number r0 with 0 < r0 < 1 in V Q IR to obtain V1, the free module over 

lR[t, t -1] generated by the x~. We also keep the Coxeter matr ix  M to be one of 

An (n > 1), Dn (n _> 4), E6, ET, or Es. 

Note that  0 < r0 < 1 implies that  the constant term of each of the entries 

of the matrices ai is a nonnegative real number. This will be the same for any 

product of ai, and so for any element of the monoid B + they generate. Therefore, 

in its linear action on V1, the monoid B + preserves 

(18) U = ~ (R_>0 • tR[t])x~. 

For A C (I, + set 

UA ---- { E k/~x/3 E U kz E tR[t] ~, /3 E A } .  
/ 3 E ¢  + 

Then, obviously, U is the disjoint union of the UA. 

LEMMA 4.1: For x E B + and A C_ ~+,  there is a unique A ~ c_ q?+ such that 

xUA C_ UA,. 

Proof." For a given subset A of ~+,  the elements of UA are the vectors in 

U for which the support  mod t is exactly ~+ \ A. In particular, an element 



118 A . M .  COHEN AND D. B. WALES Isr. J. Math.  

u = ~Ze¢+(k~  + tpz)xz of U, with kz ~ R>0 and pz ~ R[t], is in UA if and 

only if kz = 0 for/3 ~ A and kz # 0 for/3 ~ (I) + \ A. As all matr ix  entries of an 

element x of B + are nonnegative mod t, the image by x acting on two nonzero 

elements of UA will have exactly the same support  mod t. If  this is (I) + \ A', the 

images of nonzero vectors of UA are all in UA'. | 

The assignment (x, A) ~ A', where A' is the unique subset of (I)+ such that  

UA, contains xUA, defines an action of B + on P((I)+); we write x * A for A'. 

Observe that  A C_ D implies that  x * A C_ x * D. 

LEMMA 4.2: The action * preserves C. It can be explicitly described for sa as 
follows, where k E {1 , . . . ,  n} and A E C: 

(I) + / 3 - - a k C A  if (c~k, /3)=l ,  / 
s k * A = { a k } U  /3E ~3cA if ( ak , /3 )=O,  

/ 3 , / 3+akcA  if (ak,/3)=--l.  J 
In particular, ak e sk * A C_ {ak} U ra(A). 

Proo£" For the proof of the first statement,  it suffices to consider x -- Sk as B + 

is generated by these elements. 

As for the description of sk * A, only the action of ~-k on u = ~ Z e ¢ +  kBx ~ E U 
with k~ C R>0 is relevant. A computat ion shows 

TkU= E k'((1--r~)x'y+r°x'+~k)+ E k~x,+ Z k'r°x'-~k 
('y,ak)=-I (~,ak)=0 (-y,ak)=l 

= E kz-akr°xz + E kzx~ + E (k~+akr° + k z ( 1 -  r2))xfl. 
(/3,a k )----1 (/3,a~)----0 (fi',ak)=-- 1 

The set sk * A is the set of positive roots for which x~ has coefficient 0 in ~-ku 

for any element u in UA. The description of sa * A follows directly from this 

formula. For instance, for /3 C • + with (/3, aa)  = - 1  to belong to sk * A, we 

need to have k~+~ro + k3(1 - r0 2) = 0, which is equivalent to k3+~  -- k/~ = 0, 

whence/3 + aa,/3 E A. 

It  remains to show that  sk * A is closed. So suppose that /3  and 7 are in sa * A 

and that  / 3 + 7  is in if)+. Assume 7 - -  ak. We always have ak in s a * A .  As 

/3 + aa  E (I)+, the inner product (ak,/3) equals -1 .  By the above, this implies 

that  both/3 a n d / 3 + a k  are in A. But t h e n / 3 + a k  E (I)+ satisfies ( a k , / 3 + a k )  ---- 1 

and ( / 3 + a k ) - - a k c A ,  s o / 3 + a k E s k * A .  

From now on, we assume that  neither /3 nor 7 is equal to ak- Suppose that  

bo th /3  and 7 are orthogonal to ak. We saw above that  being in sk * A means 
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tha t  bo th /3  and 3' are in A and, because A is closed,/3 + 3' is also in A. But  then  

/3 + 7, being or thogonal  to ak,  also belongs to sk * A. 

The  ease remains  where a t  least one of/3 and 7 is not or thogonal  to ak.  Suppose 

first t ha t  (ak,/3) = - 1 .  As/3  C sk * A, by the above, b o t h / 3  and /3  + ak  are in 

A. If  7 is or thogonal  to ak,  we know from above and from Y E sk * A tha t  7 is in 

s k * A .  Now, a s / 3 + a k , 7  E A and A is closed, also 7 + / ~ + a k  E A. A s / 3 , 7  E A 

and A is closed, also/3 + 7 is in A. Now (/3 + 7, ak) = - 1 ,  and so by the above 

/3 + 7 is in A. We still need to consider the other  possibilities for (7, ak). As 

/3 + 7 is a root ,  (7, ak)  ~ - 1 .  Now (/3 + 7, ak) = 0 and we need only show tha t  

/3 + 7 c A. But  this follows as A is closed and /3  + ak,  7 - ak C A. 
The  only case remaining is (/3, ak)  = 1 and (7, ak)  E {0, 1}. However, the 

la t ter  inner p roduc t  cannot  be 1, for otherwise (/3 + 7, ak) = 2, contradic t ing the 

fact tha t  /3 + 7 is a posit ive root.  This  means  (7, ak)  = 0 and, as 7 E sk * A, 

we find 7 C A. As (/3, ak)  = 1 and /3 E s k * A ,  we have / 3 - a k  C A. Since 

( /~+7,  ak)  = 1, the v e c t o r / 3 + 7 - a k  is a posit ive root .  As b o t h / 3 - a k  and 7 are 

in A and A is closed, the roo t /3  - ak + 7 belongs to A. Now as (/3 + 7, aa)  = 1 

and /3  + 7 - ak E A, we conclude ~ + 7 E sk * A. I 

LEMMA 4.3: For w E W and i C {1 . . . . .  n} satisfying l(riw) < l(w), and for 

each closed subset A of ~+, we have ~b~ C {a~} U ri(A) if and only if w <_ 
b- l (L(s ig(A) ) ) .  

Proo~ Since l(r~w) < l(w), the subset  (I)~ of (I) + coincides wi th  {ai} U r i ( q ) ~ ) .  

Hence (I)~ C_ {ai} U ri(A) if and only if ( I ) ~  C_ A, which, by definition of 

g, is equivalent to b(riw) <_ g(A). By Proposi t ion  2.1(iii), this is the same 

as sib(riw) <_ sig(A), while, since the left hand side equals b(w), this in turn  

amounts  to b(w) <_ L(sig(A)) .  Hence the lemma.  I 

LEMMA 4.4: Suppose that the subsets A and E of q~ + are closed and, for some 

i E {1 . . . .  ,n} ,  satisfy {ai} C_ E C_ {ai} U ri(A). Then E C_ si * A. 

Proof: Let /3  E E .  We show tha t / 3  E si * A. We distinguish cases according to 

(ai, /3).  If  (a~,/3) = 2, then /3  = a~ E si * A by L e m m a  4.2. 

If  (ai, /3) = 1, then/3 = r i ( /3 -a i )  w i t h / 3 - a i  E A. By L e m m a  4.2, this implies 

/3E s i*  A. 

I f  (ai, /3) ---- 0, then /3 = ri(/3) with /3 E A. By L e m m a  4.2, this implies 

/3E s i*  A. 

Finally, suppose (ai,/~) = - 1 .  T h e n / 3  = ri(/3 + a~) wi th /3  + a i  C A. Notice 

/3 + a~ E E and E C_ {ai} U ri(d)  imply /3  + a i  -- ri(/3) e r i ( d ) .  In part icular ,  
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/3 + c~i E ri(A), s o / 3 + a i  -- ri(/3) with/3 • A. Since/3,/3 ÷ ai  • A, Lemma 4.2 

implies/3 • si * A. Hence the lemma. | 

PROPOSITION 4.5: The map g: C -+ ~ is B + equivariant. That is, for all x E B + 

and A E C, we have 

g(x * A) = L(xg(A)).  

Proof: It suffices to prove the assertion for x -- si with 1 < i < n. Write w = 

b-lg(si* A), so b(w) = g(si * A), and q)~ is the maximal subset of si * A belonging 

to 7). Recall from Lemma 4.2 that ai E si * A. It implies (I)rl C_ si * A, whence 

~ ,  C_ ~w, so r~ <_ w. In other words, l(riw) < l(w). Since s~ * A C_ {ai} t2 ri(A), 

we obtain (I)~ C_ {ai} t_J ri(A). Put  w' = b-l (n(s ig(d))) .  By Lemma 4.3, (I)w, is 

the maximal element of 7) contained in {ai} U ri(A) and, by Lemma 4.4, so is 

(I)~. Therefore, by Lemma 2.2(vi), w = w', proving g(si*A) = b(w) = n(sig(A)).  
| 

For x E f/, write 

(19) cx = [.J uA. 
AeC,g(A)=x 

PROPOSITION 4.6: The subsets Cx (x E f~) satisfy the following three properties 

for each x, y E f~: 

(i) Cx ¢ •. 

(ii) CxNCy=OifxCy. 
(iii) xCy c CL(¢y). 

Proof: (i) Clearly, 0 ¢ U%_1(~) _C C~, so Cx is nonempty. 

(ii) This follows immediately from the definition of Cx. 

(iii) Given x, y E 12, let A E C be such that y = g(A). Then, by respectively 

the definition of *, the definition of Cx, and Proposition 4.5(vi), 

xUA C_ U~,A C_ Cg(~.A) = CL(xy), 

whence xC~ C_ CL(xy ). | 

In fact, (iii) also holds for each x E B +, as follows from the following argument 

based on induction with respect to l(x). If l(x) > 1 then there exist i E {1 , . . . ,  n} 

and u E B + such that x = siu a n d l ( x )  -- l + l ( u ) .  Then, by the induction 

hypothesis, (iii) of the proposition, and Proposition 2.1, 

xCy  ~- 8iuCy C_ 8iCL(uy ) ~_ CL(siL(uy)) = CL(siuy ) ~- CL(xy ). 
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PROPOSITION 4.7: Let  B + act on a set U in such a way that  each element acts 

injectively. Suppose we are given subsets Cx of  U for x E f t  satisfying properties 

(i), (ii), and (iii) of  Proposition 4.6. Then the action o r b  + on U is faithful. 

Proof." (This is the proof appearing in [6].) Suppose that  the elements x and y 

of B + act identically on U. If l(x) + l(y) = O, then x and y are both  the identity 

and there is nothing to prove. Suppose, therefore, that  l(x) + l(y) > 0. Pick 

u E C1. Then xu  E xC1 AyC1 C_ CL(x) NCL(~), which implies by Proposition 4.6 

that  z = L(x)  = L(y)  for some nontrivial z C fL This means that  there are x ~, 

y~ in B + such that  x = zx  ~ and y = zy t. But then, as z acts injectively, x ~ and y~ 

act identically on U, whereas t (x ')  + l(y') = l(x) + l(y) - 2/(z), so we can finish 

by induction on l(x) + l(y). I 

Proofs of  Theorems 1.1 and 1.2: Propositions 4.6 and 4.7 with U as in (18) 

and Cx as in (19), together with Corollary 3.7, give a proof of Theorem 1.2. As 

for Theorem 1.1, suppose that  M is of finite type. If M is the disjoint union 

of diagrams M ~ and M H, then B is the direct product of the Artin groups B t, 

B II corresponding to M I, M",  respectively, and so the direct sum of faithful 

linear representations of B ~ and B Ip would be a faithful linear representation for 

B. Hence, a proof of Theorem 1.1 in the case where M is finite and irreducible 

suffices. 

By [4], every Artin group B of finite type M such that  M has a multiple bond 

occurs as a subgroup of an Artin group of finite type without multiple bonds. 

Therefore, a proof of Theorem 1.1 for finite irreducible types without multiple 

bonds, that  is, for types A, D, E ,  suffices, and this is dealt with by Theorem 1.2. 

This ends the proof of the theorems in Section 1. 

5. Epilog 

As stated before, the Artin groups whose types are spherical irreducible Cox- 

eter matrices with multiple bonds occur as subgroups of Artin groups of finite 

types without multiple bonds. They occur as fixed subgroups of an automor- 

phism group H of B permuting the vertices of M. The natural  generators of 

this subgroup are the elements 1-IkcE Sk of B for E running over the H orbits 

on the vertex set of M. It  is obvious that  these subgroups satisfy the Artin 

group relations, but it is harder to establish that  every relation they satisfy is a 

consequence of these. It  may be of interest to know whether the latter can also 

be proved by applying Krammer ' s  methods to the representation of the H fixed 
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subgroup of B on the centralizer in V of H with respect to a suitable action of 

H o n V .  

We are also able to recover Theorem 6.1 from [6]. For this we need 

the C h a r n e y  l e n g t h  f u n c t i o n  l~ on B. It assigns to x C B the smallest 

natural number k such that there are elements xl ,  x 2 , . . . ,  Xk in ~U~t -1 for which 

X ~ X l X  2 ' ' ' x  k .  

THEOREM 5.1: Let B,  R, V be as in Theorem 1.2 and write p for the linear 

representation B --+ GL(V). For x E B, consider the Laurent expansion of p(x) 

with respect to t: 

h 

p(x) = E A f ,  Ak 7 £ 0, Ah • 0, 
i= k  

where Ai is a matrix whose entries are in Z[r+l]. 

(i) Then ln(x) = max(h - k, h, - k ) .  

(ii) I f  in addition x E B + ". b(wo)B +, then k = 0 and h = l~(x). Here wo is 

the longest word in the Coxeter group W corresponding to B.  

Proof'. The proof is as in [6] and so we do not include it. The use of Lemmas 3.1 

and 3.2 in [6] is replaced by the following corresponding results for p. 

There is a linear transformation U E GL(V) whose matrix with respect to 

{x~}~ has entries in Z[r +1] such that  akU~k = U for each k E {1 , . . . ,  n}, where 

3k is the matrix ak with t and r replaced by t -1 and r -1, respectively. The 

matrix U is determined by the following rules involving an index k E {1 , . . . ,  n} 

such that (ak,/3) = 1: 

0 i f 7  ~/3, 
1 i f 7  =/3, 
Tk,~r 4 if 7 = ak <_ /3, 

U'r'~ = U.y_(~k,Z_a k if 7 -</3 and (ak, 7) = 1, 
r-lU~,~_a~ if 7 -</3 and (ak, 7) = O, 
U.r+~k,/3_~ k + (r -1 - r)UT,z_~ k if 7 -</3 and (ak, 7) = -1 .  

This matrix replaces the matrix T(q) in Lemma 3.1 in [6]. 

In the representation of Theorem 1.2, p(b(wo)) is the multiple of the permuta- 

tion matrix lr by the scalar tr e+3. Here lr permutes {x~}~ according to the action 

of -w0 on ~+ and e is the number of positive roots that are not orthogonal to a 

given root. In particular e + 3 = 2(n + 1) for An, 4(n - 1) for Dn, 24 for E6, 36 

for ET, and 60 for Es. Note that this is in accordance with the theorem we are 
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proving as k = h = 1. The  m a t r i x  p(b(wo)) replaces the  m a t r i x  of  L e m m a  3.2 in 

[6]. . 

Jus t  as in [6], this  leads to a different p roo f  t ha t  p is faithful.  Indeed,  if x is 

in the  kernel,  we see h = k = 0 and so lf~(x) = 0, es tabl ish ing t ha t  x is the  uni t  

e lement  of B. 
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