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ABSTRACT

Recent results on the linearity of braid groups are extended in two ways.
We generalize the Lawrence Krammer representation as well as Kram-
mer’s faithfulness proof for this linear representation to Artin groups of
finite type.

1. Introduction

Recently, both Bigelow [Bigelow] and Krammer [Krammer] proved that the braid
groups are linear. The braid group on n+ 1 braids is the Artin group of type A,.
This paper extends the result to all Artin groups whose types are finite, that is,
belong to finite Coxeter groups.

* This paper was written during a stay of the first author at Caltech. He wants to
thank the institute for its hospitality. Shortly after we circulated a preprint of
the present paper, we learned that Digne had obtained similar results.
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THEOREM 1.1: Every Artin group of finite type is linear.

Linearity of a group means that it has a faithful linear representation. A standard
argument reduces the proof to Artin groups whose types are finite and irreducible.
We focus on the Artin groups of type A, D, E. Since the other Artin groups of
finite and irreducible type can be embedded in these (cf. [4]), it will suffice for a
proof of Theorem 1.1 to exhibit a faithful representation for each of the groups A,
D, E. The theorem below provides more information about the representation
found.

Throughout the paper, we fix a Coxeter matrix M of dimension n, and denote
by B the Artin group of type M. This means that B is the group generated by
n elements s1,..., s, subject to the relations

(1) 81'8]‘81‘"‘ = SjSiSj"'
N e’ N o’

length m;;  length m;;

for 1 <14 < j < n. The Coxeter system of type M is denoted by (W, R) with R
consisting of the images r; of s; (i = 1,...,n) under the natural homomorphism
from B to the Coxeter group W. We use the standard facts and some terminology
of root systems as treated for example in [2]. We shall be working solely with
Artin groups of finite type, so W is assumed finite, and W has a finite root system
® in R*. We shall denote by a4, .. ., a, the fundamental roots, corresponding to
the reflections 71, ..., r,, respectively, and by ®* the set of positive roots:

(I)+ =dnN @ Rzoai.
1<i<n

Then & is the disjoint union of ®* and &~ = —®*. f M = A4, (n > 1), D,
(n > 4), Eg, E7, or Eg, we say that B is of type A, D, E.
The coefficients of our representation will be taken in the ring Z[r,¢,7 =1 ¢ 1],

and we write V' for the free module over that ring with generators zg indexed by
B e dt.

THEOREM 1.2: Let B be an Artin group of type A, D, E. Then, for each
k€ {1,...,n} and each 8 € ®*, there are polynomials Ty, g in Z[r] such that the

following map on the generators of B determines a representation of B on V:

S+ O = T + tTh,
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where Ty is determined by

0 if (g, B) = 2
N ) rzp_a if (ag,8) =1
(@) = o, if (o, 8) = 0

(1-12)z5+1T34a, if (arB)=-1

and Ty, is the linear map on V determined by Tyxp = Ty g, on the generators
of V. If r is specialized to a real number g, 0 < 79 < 1, in V @ R, we obtain a
faithful representation of B on the resulting free R[t, ¢~ !]-module V| with basis
zs (8 € ).

The proof of this theorem is based on Krammer's methods. More specifically,
we generalize the Lawrence Krammer representation [6, 7] as well as Krammer's
faithfulness results from braid groups to Artin groups corresponding to a spherical
root system with a single root length. The difficulties in the proof come in the
proper definition of the Ty 3. These are determined by Algorithm 3.4. The
algorithm has been implemented in the computer algebra package Maple and has
been used to construct the representations of B for all M of type A, D, E, and
rank at most 10. In Example 3.8 we verify that, for type A, the representation
of Theorem 1.2 is indeed the Lawrence Krammer representation.

In Section 2 we recall basic and useful properties of Artin groups, including
generalizations of some of Krammer’s results on braid groups. Section 3 intro-
duces the representation referred to in Theorem 1.2. Section 4 presents a version
of Krammer’s linearity proof generalized to Artin groups of arbitrary types and
applies it to the representation of the preceding section. The paper finishes with
a few remarks on alternative proofs in Section 5.

2. Basic properties of Artin groups

We maintain the notation of the introduction. The Coxeter group W is assumed
to be finite of type A, D, or E.

The submonoid of B generated by si,...,s, is denoted by B¥. By < we
denote the partial order on BT given by z < y & y € xB*. The length function
on W with respect to R, as well as the length function on B with respect to
{81,--.,8n}, is denoted by .

PROPOSITION 2.1: The Artin monoid B¥ satisfies the following properties.

(1) The relations (I) form a presentation for BT as a monoid generated by
S81y.+-48n.
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(i) B = (BT)"'B*. Consequently, if p is a faithful linear representation of
the monoid B such that p(s;) is invertible, then p extends uniquely to a
faithful linear representation of B.

(i) For z,y,2€ BT we have zx < zy &z < y.

(iv) There is a uniquely determined map b: W — B satisfying b(uv) = b(u)b(v)
whenever u,v € W with l(uv) = l(u) + l(v). It is injective and satisfies
1(b(w)) = l(u). Write 2 =b(W) C B*.

(v) There is a uniquely determined map L: Bt — Q C B* such that, for each
x € BT, b-1L(x) is the longest element w of W with the property that
b(w) < z.

(vi) For z, y € B, we have L(zy) = L(zL(y)).

(vii) The map Bt x Q — § which takes (z,y) to L(zy) defines an action of B¥
on €.

Proof: (i), the first part of (ii), (iii), and (iv) go back to [5]; they are also stated
in [4, 3]. The second part of (ii) is a direct consequence of the first part (observed
in [6]).

(v) See [3].

(vi) This is Corollary 1.23 of [5] (cf. Lemma 2.4 of [3]).

(vii) As observed in [6], this is immediate from (vi). |

A subset A of ®* is called closed when
a,B€A a+pfedr=za+8€ A
By C we denote the collection of all closed subsets of ®*. For w € W, set
O, ={acdwlacd}.

Let D be the collection of all ®,, (w € W).
On W we have a partial order given by

(2) v<we ew w=vu and l(w)=1I(u)+1(v).

On C, we consider the partial order by inclusion.

LEMMA 2.2: The members of D have the following properties.
(i) Ifv, u, w are as in (2), then ®,, = &, Uv(P,).
(i) The size of ®,, equals l(w).
(ili) For z,y € W we have ®;, = ®, Uz®, if and only if &, C ®,,.
(iv) The members of D are closed.
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(v) If A is a closed subset of ®*, then there is a unique maximal subset A’ of
A of the form ®,, withw € W.

(vi) There is an isomorphism of partially ordered sets (W, <) — (D, C) given
by w — @,,.

Proof: (i) and (ii). See [2].

(iii) Clearly, one implication is trivial and the case {(z) = 1 follows from
the fact that, for a fundamental reflection r, the set @, is the singleton of the
corresponding fundamental root. If x € W has length greater than one, there is
a fundamental reflection r such that u = rx has length I(z) — 1. Now &, C &,
implies &, U r®, C &, Urd,,. Hence &, C ®,, and &, C &,,. By the
induction hypothesis the former inclusion yields &,, = ®, U u®,. But then
also, by the latter inclusion and the induction hypothesis, ®,, = ®, Ur®,, =
&, Ure, Urud, = ¢, Uzd,.

(iv) For 3,7y € ®,,, we have w™1(3+7) € (@~ + @ )N® C I~.

(v) For z,y € W we have x < zy if and only if [(zy) = l(x) + [(y), if and only
if & = &, Ux(®,). By (iii), this is equivalent to &, C .

Suppose now that there is no largest member of D contained in A. Then, by
(), there are u € W and 4,5 € {1,...,n} with 4 < wr; and u < ur; for which
®,r, € A and @y, C A such that no member of D containing Py, U D, is a
subset of A. Then ua; and ue; are in A, and, by [2], u < uw;;, where w;; is
the longest element of the subgroup of W generated by r; and r;. This is r;r; if
r; and r; commute and r;r;r; if they do not. So, in the former case @y, ™ @y
consists of ua; and waj, and in the latter case of ua;, ua;, and ue; + uoy,
which belongs to A as A is closed. This means ®,,,,; C A, a contradiction with
(I)uri U (I)urj - (I)uwij .

(vi) We have l(w) = |®,,| so we can work by induction on [(w). Clearly, ®,
is the empty set, so assume [{w) > 1. Then there is a fundamental reflection
r; such that I(r;w) < l(w). Now w™l(q;) € ® so, if a; € ®,, = @, then also
v"Ha;) € 7, so I(r;v) < l(v). Consequently, ®,,,, = ®,.,, so by induction
r;w = r;v, establishing w = v. [ |

For A a closed subset of ®*, write g{A) = z for x € Q such that ®,-1, is the
maximal subset of A belonging to D. In view of Proposition 2.1 and Lemma 2.2,
the map ¢g: C — 2 is well defined.

In the next section we define the linear representation for B of type A, D, F.
In the subsequent section, we use this representation to define an action of B+

on C that makes the map g equivariant with the action on 2 of Proposition 2.1
(vii).
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3. The representation for types A, D, E

In this section, we continue to assume that the type M is A, D, or E. This
has the consequences that ®* is finite and that M can be viewed as a graph on
{1,...,n} with adjacency k ~ [ given by (ryr;)® = 1, or, equivalently, (ax, ;) =
—1. Nonadjacency of k and [ corresponds to (rx7;)? = 1 and to (ag,oy) = 0.

We shall first describe the ‘t = 0 part’ of the linear representation of the Artin
monoid B*. Recall the Z[r*! t*!]-module V and the linear transformations 7
introduced in Theorem 1.2. Denote by V; the free Z[r]-module with generators
zg (B € ®*). Thus, V; is contained in V, and V is obtained from Vj by extending
scalars to Z[r*! 1],

LEMMA 3.1: There is a monoid homomorphism Bt — End(Vp) determined by
s (i=1,...,n).

Proof: 'We must show that, if ¢ and j are not adjacent, then 7;7; = 7;7; and,
if they are adjacent, then 7;7;7; = 7;7;7;. We evaluate the expressions on each
zp and show they are equal. We begin with the case in which 8 = o; or o;.
To be specific, let 8 = «;. Suppose first that ¢ and j are not adjacent. Then
Ti%e, = 0 and 724, = To;. NOW T;T;Zo;, = 0, TiTjTo, = TiTa, = 0 and the result
holds. Suppose next that i and j are adjacent. Then 7;2,, = 7;%4, = 0 and
Tjta; = (1 = r®)Tq, + "o, 4a;. Now

TiTjTie, = 7375(0) =0
and
_ 2 o 2
TiTiTi%T; = TjTi((L = 7%)&a, + rTa,4a;) = T(0+7"Ta,1a;-0,)
— 2, —
=7°7jZq; = 0.
We now divide the verifications into the various cases depending on the inner

products (a;, 8) and (a;, 8). The table below describes the images of the vectors
zg under 7; and 7;.

(@, 8) | (@;,8) TiTp %
0 0 x3 x3
1 1 TTE_q; TZG_q;
1 -1 TTH g (1=7Hzp 4+ r254q,
1 0 TT8q, g
-1 0 | (1-7%zs+ rzgta, rg
-1 -1 | A=r))zg+ 1T840, | (1 —r?)xs + 12340,
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First assume that (oj,a;) = 0. The computations verifying 7;7; = 7;7; are
straightforward. We summarize the results in the following table.

(Cti,/3) (aj,ﬁ) TiTjil’B :TjTi.Tﬂ
0 0 s
1 1 25 _q,—a,
1 -1 r(l— r2)xﬁ—ai + T2‘T5+aj—ai
1 0 TT3—q;
-1 0 (1-7%)zp + rTatas
-1 ~1 | (A =r®) s + (1= 1)) (@p4a; + Tpta,) + T Tptaita,

We demonstrate how to derive these expressions by checking the third line:
nrieg = 1((1 - 'r2)x5 +rrg4q;) = (1~ T2)T$B_ai + r2mﬁ+a]._ai.
In the other order,
7i7p = Ti(r2p_a,) = (1 = r*)rzp_a, + 1’ Tpta,-a,-

Recall (@, ;) = 0 and so (8 — oy, 05) = (B, 5) = —1.

Suppose then that (a;,a;) = —1. The same situation occurs except the com-
putations are sometimes longer and one case does not occur. This is the case
where (a;, 8) = (aj, 3) = —1. For then 3 + q; is also a root, and (8 + o, ;) =
—1—1 = —2. This means 3 4+ a; = —a; and 3 is not a positive root. The table
is as follows.

(0, 8) | (a,8) TiTiTiTg = T T; T3
0 0 s
1 1 0
1 -1 7"(1 - 'r2)x5_ai + 7‘21?5
1 0 7'2‘17,3—01—043'
-1 0| (1- TZ)IB +(1- ‘r2)T$5+ai + T2xﬁ+a.‘+a1
-1 -1 does not occur

As above, these calculations are routine. Note that, in the second line, § =
a; + a;. We do the second from last case in detail. Here, (a5, 3) = —1 and

(aij) =0

T =1Tixg = 7;((1 - s + TT84a;)

=1~ T‘Z)I,g +r(l1—- 'r2)x5+ai + r21:5+ai+aj .



108 A. M. COHEN AND D. B. WALES Isr. J. Math.
In the other order,

niTimiag =17 (1 — r)zs + rTa4a,)
=1i((L = r*)zg + r(1 = r°)Tp4a; + ITZB4as4a;)
=(1=7*)2z5 + (1 = r)rzgpa, + 12(1 — 125 + r’Ta 4040
=(1 = rzp + (L = )40, + 7"25'3/3+c>z,~+ozj' i

We next study the possibilities for the parameters T} s occurring in Theorem
1.2. Recall that there we defined oy = 75 + T}, where Tpxg = Tk gTq,. We shall
introduce T}, g as Laurent polynomials, i.e., as elements of Z[r,r!], but it will
turn out that these actually belong to Z[r] (cf. Corollary 3.7).

PROPOSITION 3.2: SetT; ,, = r* foralli € {1,...,n}. Foro; — 7;+tT; to define
a linear representation of the group B on V, it is necessary and sufficient that
the equations in Table 1 are satisfied for each k,1 =1,...,n and each 8 € ®*.

Proof: The oy, should satisfy the relations (1) for s;. Substituting 75, + 7}, for

sk, we find relations for the coefficients of t* with ¢ = 0,1,2,3. The constant

part involves only the 7. It follows from Lemma 3.1 that these equations are

satisfied. We shall derive all of the equations of Table 1 except for (16) from the

t-linear part and the remaining one from the ¢-quadratic part of the relations.
The coefficients of ¢ lead to

(3) Tle = Tk and TlTk = Tl if (ak,al) = 0,
4) nTwn+ Timem + imedy = e + T + e Ty if (ag, 00) = =1,

We focus on the consequences of these equations for the Ty g. Consider the
case where (ay,a;) = 0. Then

(ag, B) TRZg Tir =T,
0 z no condition
1 L3 T, = Tip
-1 | Q=r)zp+rapra | A=r )T+ rTpta, =Tis

Both equations say the same, namely,
(5) Tig =111 p—q, if (ag,8) =1 and (evg, 1) = 0.
Next, we assume (o, oy) = —1. A practical rule is

ThTZay, = Th{(1 = 1%)Ta, + T20; 1)) = T Ty
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We distinguish cases according to the values of (ag, 3) and (aq, 5). Since each
inner product for distinct roots is one of 1, 0, —1, there are six cases to consider up
to symmetry (interchange of k and ). However, the case (ay, 3) = (ay, 3) = —1
does not occur. For then {643, ay) = —2, a contradiction with the fact that both
o3 and «; are positive roots.

For the sake of brevity, let us denote the images of the left hand side and the
right hand side of (4) on zz by LHS and RHS, respectively.

Case (ax, 8) = (ar. ) = 1. Then (0k, o) = (8 — ak, 1) = 2,50 f = o + u.
Now
RHS =n,Timkxs + Temmexs + e Tpas

=17 11%a;, + TTT1Z0; + Thoopto, ThTIZ 0y
:Tl,aerkxal + Tk,ak+al7'2:l7al

:Tl,al"'(l - TQ)xa, + Tl,alT2$ak+a, + Tk,ak+az7'2xal
=(T1,0,7(1 = %) + Tk a4y ™) Ty + T T Tt

Comparison with the same expression but then [ and % interchanged yields LHS.
This leads to the following two equations:

(6) Tk,ak+al :Tl,al (T - 'r—l)’
Tk,ak :Tl,a['

The second one, and homogeneity of the presentation relations, allow us to scale
the T; so that

(7) Tia, =1
Case (ay, 8) = (o, ) = 0. This gives

RHS =7Tixg + Trarpg + reriTrxp
=T18T%Ta; + Th pTa, + Tr aThTiTa,
=T15(1 = 13) %0, + T1.57%0 +ar + Tk pTay + Tk prta,
=Tk + T15(1 ~ 7)) 0y + T187%0y +ar + Th5Ta,
and LHS can be obtained from the above by interchanging the indices & and I.
Comparison of each of the coefficients of x4, , o, +a,, Ta, gives

(8) Ty =T

Since the other cases come down to similar computations, we only list the results.
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Case (ag,8) =0, (o, 8) = —1. Then

9) Tipray =t 'Tig — Tip(r~" — 1),
(10) Tl,/3+at+ak :Tkﬁ - 7.—1(1 - Tz)Tl,ﬁ-Fal'

Case (ag, ) =0, (a;, 3) = 1. Here

(11) Tip =Tl p-ai—ar + (r* = )r Tk s,
(12) T[ﬁ =TT;C'5_O”.

Case (o, ) =1, (o, 8) = —1. Now

(13) Tlﬁ ZT_ITk,B—ak - (T_l - T)Tl,ﬁ—ak’
(14) T gta; =7Tk,8,
(15) Te o =T1g—cr — (171 = 1) Tk .

Table 1. Equations for T} g

Ty 8 condition reference

0 B=o;and k#1 (16)

rt B=ay (7)

r® — 8 B=ar+ o (6)

TTk,B—a, (a,,ﬁ) =1 and (ak,al) =0 (5)

Tip—ap—oy + (1 =7 VT s-0, | (ak,B8)=0and (a,8)=1 (11)
and (o, o) = —1

P i geo, + (=17 Tk g, | (ok,B) =—1and (,8) =1 (13)
and (ag, o) = -1

T g—ay (ak,B3) =1 and (¢, 3) =0 (12)
and (ay, o) = -1

We see that, in order to be a representation, the T; g have to satisfy the equa-
tions (5)—(15). In the t-quadratic study below, we shall also derive the equation
(16). The resulting system (5)—(16) is superfluous in that, when the root in the
index of the left hand side of (9) is set to v, we obtain (13) for v instead of 3.
Similarly, (10) is equivalent to (11), while (14) is equivalent to (12) and (15) is
equivalent to {11}.

We also contend that the equations in {8) are consequences of the other re-
lations from Table 1. The equation says that Ty g = T; s whenever (o, ) =
(a1, 8) = 0 and k ~ I. We prove this by induction on the height of 5. The initial
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case of 8 having height 1 is direct from (16). Suppose therefore ht(3) > 1. There
exists m € {1,...,n} such that (am,8) = 1. If (am, k) = (@m,0q) = 0, then
(5) applies to both sides, giving Tk 3 = rTk g—an = 71i,8—a,, = 11,3, where the
middle step uses the induction hypothesis.

Therefore, interchanging k£ and ! if necessary, we may assume that [ ~ m,
whence k +# m (as the Dynkin diagram contains no triangles). Now § = 8 —
am— 0y € 1 and (ag, ) = 1, so (5) gives T.5 = rTm s-0o,. Which, by induction
on height, is equal to 77} 5_q, (as (ar,d — ) = (@m,d — ax) = 0). Notice that
B has height at least 3. Consequently,

Tk,g ZTTk,@_am by (5)
=T 6—ay + (1% — DTk s by (11)
=T+ (r® — DT by the above
=Tms+ (=710, by (12)
=Tz by (11).
We have established that the equations of Table 1 represent a system of equa-
tions equivalent to (3), (4), and (16).
We now consider the coefficients of t2 and of #3 in the equations (1) for o;. We

claim that, given (5)—(15), a necessary condition for the corresponding equations
to hold is

(16) Tho, =0 ifk#£L

To see this, note that, if k o [, the coefficient of t? gives T}, T; = T)T; which,
applied to z4,, yields (16). If k ~ [, note

Tinza, = Te((1— 1"2)93,1,c + Ity ) = (r4(1 - 1"2) + Tk optoy ) Tay =0
as Tk.a,+a; = — 7°. Now use the action of
I + 1T Ty + TiTery = T Ti + i Ty + T Ty,

on z,,. We see only the middle terms do not vanish because of the relation above
and so

T4Tk,0q TiLoy, = Tk,a[Tl,ak TeZay-
By considering the coefficient of z,, , which occurs only on the left hand side, we
see that (16) holds.

A consequence of this is that T;T; = 0 if # # j. Now all the equations for the
t? and t3 coefficients are easily satisfied. In the noncommuting case of t2, the
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first terms on either side are 0 by the relation above and the other terms are 0
as )Ty = 0.

It remains to establish that the matrices oy, are invertible. To prove this, we
observe that the linear transformation o2 + (r?2 — 1)oy, — r2 maps V onto the
submodule spanned by z,, and that the image of x,, under oy is triz,,. In
fact, the determinant of oy equals (—1)°tr“+2¢, where c is the number of positive
roots 3 such that (ag,3) = —1. ]

For a positive root 3, we write ht(3) to denote its height, that is, the sum of
its coefficients with respect to the o;. Also, Supp(f) is the set of k € {1,...,n}
such that the coefficient of oy, in 3 is nonzero.

COROLLARY 3.3: If the Ty 5 € Z[r,r~] satisfy the equations in Table 1, then
these obey the following rules, where ht(3) stands for the height of .
(i) If (ak, B) = (a1, ) = 0 and (ag, ;) = —1, then Ty g = T; 5.
(ii) If (g, B) = 1, then Ty, g = rh*B+1(y2 — 1),
(i) The degree of Ty g equals 3 + ht(3) whenever k € Supp(3).
(iv) Ty p is a multiple of r? — 1 whenever § # ay.
(v) Tk,p = 0 whenever k ¢ Supp(5).

Proof: (i) The equations are necessary as they appeared under (8).

(ii) Use induction on ht(3). If ht(8) = 2, the equation coincides with (6). If
ht(8) > 2, then either (5) or (12) applies. As ht(3) > 2 there must be some [
for which (8 — ak, ) = 1. Now (8, ;) — (ag,ou) = 1. If (o, 0q) = 0, then
(8,a1) =1 and (5) applies; if (g, ;) = —1, then (5, ;) = 0 and (12) applies.

(iii) and (iv) are obvious.

(v) follows from (16) by use of (5) and (13). Observe that, if k¥ ¢ Supp(3) and
(ay, B) = 1 for some [ ~ k, then ! ¢ Supp(8 — ). ]

The proposition enables us to describe an algorithm computing the Ty g, and
which shows that there is at most one solution.

Algorithm 3.4: The Laurent polynomials T}, 5 of Theorem 1.2 can be computed
as follows by using Table 1.

(1) If k & Supp(B), then T} g = 0. Otherwise, proceed with the next steps.

(1) If ht(8) < 2, equations (7) and (6), that is, the second and third lines of
Table 1, determine T} g. From now on, assume ht(3) > 2. We proceed by
recursion, expressing Tk g in Z[r,7~']-linear combinations of Tp, ,’s with
ht(vy) < ht(8).
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(i) If (o, B) = 1, set T, 3 = rP*@+1(+2 — 1), From now on, assume (ag, 3) is
0or —1.

(iv) Search for an € {1,...,n} such that (o, o) = 0 (so k and ! are nonad-
jacent in M) and (a,3) =1 (so 8 — oy € ®). If such an [ exists, then (5)
expresses Tj g as a multiple of Ty g_o, .

(v} So, suppose there is no such {. We know 3 — ay, is not a root as (g, 3) # 1.
There is an [ for which 3 — ¢; is a root (so (o, 3) = 1). We must have
{ag,q) = —1 (so k and [ are adjacent in M). By our choice, (ag, ) =0
or —1. Now the identities (11) or (13) express T} s as a linear combination
of Ty s—q, and some T; ., with ht(y) < ht(3).

This ends the algorithm. Observe that all lines of Table 1 have been used (with
(16) in (i) and (12) implicitly in (iv)).

The algorithm computes a Laurent polynomial for each k, 3 based on Table
1, showing that there is at most one solution to the set of equations. The next
result shows that the computed Laurent polynomials do indeed give a solution.

PROPOSITION 3.5: The equations of Table 1 have a unique solution.

Proof: 'We need to show that the Laurent polynomials Ty 3 defined by Algorithm
3.4 satisfy the equations of Table 1. By Step (i), (16) is satisfied. By Step (ii),
(7} and (6) are satisfied if S has height 1 or 2. We use induction on ht(3), the
height of 3, and assume ht(8) > 3. Suppose first (ag, 3) = 1. Notice in (5) that
(8,8—a;) =1as (v, B) =1and in (12) that (3,8 —ax) = 1 as here (3, a;) = 1.
This means the relevant terms are defined by Step (iii) which depends only on
the heights. As ht(8) = ht(8 — «;) + 1 the equations are correct: here Ty 3 =
ritB+1(r2 1), 50 if (ey, B) = 1, we have Ty g_q, = rP*F-2)+1(32 _ 1) whence
Tip = 1Tk,p—q, giving (5). The proof of (12) is similar. This shows (12) holds
and (5) holds if (ay, 8) = 1.

We now suppose that (ay, ) is 0 or —1. We first check (5). If this applies,
the value Ty g is determined in Step (iv) of the algorithm, and we are really
checking the value did not depend on the choice of . Suppose there is an I’
for which (a;,8) = (ay,8) = 1 and (o, ax) = (ap,ar) = 0. Then by our
definition Ty g = 1Tk g_qo, and we must show that Ty 3 = 7Tk g_q,. If 1 ~ T,
then (8 — ag,a;) = 2 and 3 = a; + o4 has height 2. This means we can assume
14 V. Then (B—ay,ap) = 1and (B—ayp, o) = 1. In particular, 8—a;—ay is also
aroot. Now apply (5) and the induction hypothesis to see Ty, 5_qo, = 7Tk g—a;—a,
and Tk g—a, = rTp—a;~a, > and s0 Ty g = 1Tk g_a, = 7Tk g—o, . This shows that
(5) holds.
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We have yet to check (11) and (13). Suppose first Ty 3 was chosen by Step
(iv). In this case there are I, I’ with (8,a:) = (B,ar) = 1, (o), ) = —1 and
(ag, ) = 0. Here Ty 5 is determined by Step (iv) of the algorithm, T} 3 =
T 3—a,- We must have I £ I, for if | ~ I, we would again be in the height 2
case. In order to obtain (11) we must show that if (o, b) = 0, then

T p-ay = Ttp—ar—ar + (r =177 ) Tk poay-
Observe that (8 — oy, ay) = 1 and (ag, ;) = —1 and so, by (11),
TTk,,B-—a[/ = TTZ,E-a,/——al—ak + T(T - T—I)Tk,ﬂ—al/—a['

Now, as (aq, ar) = 0, we can use (5) to obtain T; g_q, —a; = r11,8-a;—az—a, and
Trp—01 = T™Tk,8—ai—ay» and so the equations are satisfied. In order to satisfy
(13) when (3, ax) = —1, we need to show

Tk pooy =7 ' Tigocy + (1 =1 )Tk poy-

Again express these terms using (5) subtracting a; in each of the expressions to
get equality.

We may now assume that Ty g was chosen in Step (v). If [ is the one chosen
in Step (v), then Ty 3 was chosen to satisfy (11) or (13), whichever it is. If not,
there is another index I’ which was used in Step (v) to define T} g. For these
the conditions are (8, a;) = (8,ar) = 1 and (og, ) = (o, ) = —1. Clearly
I A1, for otherwise there would be a triangle in the Dynkin diagram M. Now
{ay,8— ar —a;) =2 and so 3 has height 3. Now the necessary conditions follow
as the terms are of height 1 or 2 in the expression

Tig—ar—ar + T+ 7 Nk s, = To poay—ay + T+ 177 DVTk say,

for (11) and of height 2 for (13).
Now all the equations in Table 1 have been shown to hold. |

COROLLARY 3.6: The solution Ty g of Proposition 3.5 is computable via expo-
nents ax g, ¢, di.p as follows. Ty, g = 0 if k ¢ Supp(f) which amounts to a; g,
ck. 3, dr.5 being zero. Moreover, Ty, g = r* if B = ay. Otherwise,

(1 _ T—ak’ﬁ) If (ak7 /3) = 0
(1 _ T_Ck'B)(l — r_dka) if (akn@) =-1

T p

(17) O (2 1)
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with
kB =0k B—oy if (. 8) =1l and k £ 1,
k3 = g—a,—0, T2 if (r,3) =1 and k ~ 1,
{ek.3 di 3} ={ck.p—ars dk,8—c1 } if (a;,8)=1and k # 1,
{cr.s deg} ={arp—as Clp-oy + 2} if (n,8) =1, di,g—0, = k,p-ay>
and k~1
{cr.p, dr,s} ={ai,pam s} if (00, 8) = 0, (am, B) =0,

and I ~k~m#1.
Proof: The proof is similar to that of Proposition 3.2. It runs by induction on
the height of 3. The initial cases and the case where {cy, 3) = 1 follow directly
from Proposition 3.2 and Corollary 3.3.
Suppose (ax,8) = 0. Let I be such that (ay, 8) = 1. If I £ k, then (5) applies,
which, in view of the induction hypothesis and {ay, 8 — a;) = 0, gives

Tk,ﬂ = ‘er’B_al = Tht(5)+1(7'2 - 1)(1 - T_ak”/j"a’ ),

proving the first rule. If I ~ k, then (11) applies, which, in view of the induction
hypothesis and (o, 8 — o) =1 and (e, 8 — ax — a;) = 0, gives

Tk,ﬂ =T, B—ak—a; T (r— r_l)Tk B—ay
_,’,ht(/-g) l(r _ 1)(1 TRy — C'l) + ’,ht(ﬁ)(,rﬂ _ 1)(7, _ ‘l"—l)
=7 (ﬁ)—l( )( pUB-an-a; 4 p? _ 1)

_Tht(ﬂ)-H(r _ )(I_T*avl,ﬁ—ak—al—2)’

proving the second rule.

Next suppose (ay, 3) = —1. Let I be such that (ay,3) = 1. If k& ¢ I, then the
third rule follows from (5).

If k ~ 1, then (o, f — ay) = —1 and (o, 5 — o) = 0, so (13), induction and
L dl,,B—al give

Tip=r"'Tipoa, + (r =17 )Thp-c
=t (p2 _1)(1 = pms-ar) (1 — r=s-a)p=2 4 (1 — 172))
=pht (2 _1)(1 — pm - )(1 — p 8- =2,

as required for the fourth rule.
In order to prove the last rule of the corollary, suppose (ag, 3} = —1 and let
I, m € Supp(p) be as indicated. Let j be such that (a;, ) = 1. If j is nonadjacent
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to each of k,[,m, then the rule follows easily from (5). Therefore, we may and
shall assume that each index j with (o, 3) = 1 is adjacent to (at least and hence
exactly) one of k,l,m. By analysis of the root system of type M, it follows that
we can always choose 7 to be adjacent with either [ or m. Thus, without loss of
generality, assume that there exists an index j with (a;,3) = 1 and j ~ m. Then
j # k,l as the Coxeter graph is a tree. According to (5), (13}, and the induction
hypothesis, we have

Tis =Tk p-0; = Tm.p-as—am + (r* = DTk p—a;-an
:Tht(ﬁ)—l(rz — 1)(1 — P88 —am )(1 _ ,r—‘ak,ﬂ—aj——am)
+ rht(ﬂ)_l(rz -1D{1- 1‘“““*5‘"1“"‘"1)(r2 -1)

=L (2 1) (1 — %8 mem ") (1 — T By em ),

By the second rule a;3_q;-a,, +2 = @m g, and by Corollary 3.3(i) and the first
rule, Gk g—a;—an, = Ol f—-aj—am = U f—a; = 0,3, Whence the last rule. n

We are now ready to prove the first part of Theorem 1.2.

COROLLARY 3.7: The Laurent polynomials Tj, g of Proposition 3.5 belong to
rZ[r]. In particular, they are polynomials, and the Ty g determine a representa-
tion of B on V as claimed in Theorem 1.2.

Proof: By induction on ht(3), the rules for ax g, ck g, di,g of Corollary 3.6
readily imply that ax s < ht(b) and cx,g + d,g < ht(b). Hence the first part of
the corollary. For the second part, combine the above with Propositions 3.2 and
3.5. ]

Example 3.8: The A, case. Then ck3 = di,g = 0 and a3 = 2 if k € Supp(3).
Note that the last three lines of the corollary do not occur. Our representation
can be obtained from the Lawrence Krammer representation as described in [6]
by a diagonal transformation with respect to the basis x5 (8 € ®*), and by
replacing ¢ by 72. As a result, the involutory automorphism of the diagram A,
can be realized as a linear transformation leaving invariant the basis (compare
with Remark 5.1 of [6]). To be more specific, the roots in the A, case are of
the form a; + a;41 + -+ + aj—1 for 1 < ¢ < j < n. For such a root 3, set
z;; = (r~1)"*Jzg. These are the elements appearing in [6]. In the action of oy
on this basis r always appears to an even power. Replacing r2 by ¢ gives the
action in [6].
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Example 3.9: The D,, case. For a given root in D,, let [; be the number of
coefficients 1 in the expression of 3 as a linear combination of the «;, and let Iy
be the number of coeflicients 2. These are the only nonzero coefficients which
can occur for Dp. In the case (ag, 8) = —1, we have {cx 3,di g} = {2,2l2 + 2}.
Assume now that (ag,3) = 0 and k € Supp(8). If oy has coefficient 2 in 8 or
k is the end node of a short branch of the Coxeter diagram, then ax g = 4; if
k is the end node of the long branch (possibly after removing nodes with zero
coefficients), then ax g = 2ly + 2; otherwise ar g = 2. It is straightforward to
check that the relations of Table 1 all hold.

4. Faithfulness of the representation

We now combine the representation of Section 3 with the root system knowledge
of Section 2. Our arguments are straightforward generalizations of Krammer’s
method, but we give details anyway for the reader’s convenience.

Recall that V is the free module over Z[til, r£!] generated by xp for B ranging
over the positive roots. In Corollary 3.7 we established the first part of Theorem
1.2. In this section we prove the second part. To this end, we specialize r to
a real number rg with 0 < rg < 1in V © R to obtain Vi, the free module over
R[t,t~!] generated by the zg. We also keep the Coxeter matrix M to be one of
An (n 2 1), Dn (n > 4), EG, E7, or Eg.

Note that 0 < rg < 1 implies that the constant term of each of the entries
of the matrices o; is a nonnegative real number. This will be the same for any
product of o;, and so for any element of the monoid Bt they generate. Therefore,
in its linear action on Vi, the monoid Bt preserves

(18) U= P Rso & tRt])zs.
peDt
For A C &% set
Uy = { > kpas € U‘kg ciR[t] & B¢ A}.
BEPT
Then, obviously, U is the disjoint union of the U4.
LEMMA 4.1: For z € Bt and A C &%, there is a unique A’ C ®*t such that

xUas C Uy

Proof: For a given subset A of ®F, the elements of U, are the vectors in
U for which the support mod t is exactly ®+ ~ A. In particular, an element
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u = Zﬂeq,Jr (kg + tpg)xs of U, with kg € R>o and pg € Rt}, is in Uy if and
only if kg =0for B € Aand kg # 0 for 3 € &+ A. As all matrix entries of an
element x of Bt are nonnegative mod ¢, the image by z acting on two nonzero
elements of U4 will have exactly the same support mod £. If this is &t ~ A’, the
images of nonzero vectors of U4 are all in Uy, |

The assignment (x, A) — A’, where A’ is the unique subset of &1 such that
Uyas contains xUy,, defines an action of BT on P(®1); we write z x A for A'.
Observe that A C D implies that x ¥ A C x x D.

LEMMA 4.2: The action = preserves C. It can be explicitly described for s;, as
follows, where k € {1,...,n} and A€ C:

B—ar€eA if (o, 8) =1,
Sk*AZ{Ozk}U ,@E‘D+ﬁ€A if (ak,ﬁ)———O,
B, 8+are A if (ak,ﬂ) = —1.

In particular, oy, € s * A C {ag} Urg(A4).

Proof: For the proof of the first statement, it suffices to consider x = s, as B*
is generated by these elements.

As for the description of si * A, only the action of 7, on u =} 5 4+ kgrg € U
with kg € R> is relevant. A computation shows

Tkl = Z ky (1= 78) 2y + 70T 40, ) + Z kyzy + Z kyToLy—a

(rsak)=-1 (7-ax)=0 (7.ox)=1
= > kpagrozst Y. ksms+ Y (kpra,To+ks(l—13))zs.
(B,ar)=1 (8,01)=0 (B,01)=—1

The set s; * A is the set of positive roots for which zg has coefficient 0 in T,u
for any element u in Us. The description of s; x A follows directly from this
formula. For instance, for 3 € ®* with (8,a;) = —1 to belong to si *x A, we
need to have kgyq, 7o + kg(1 — 72) = 0, which is equivalent to kgta, = kg = 0,
whence 8+ oy, 3 € A.

It remains to show that s * A is closed. So suppose that 3 and « are in s * A
and that 8+ v is in ®t. Assume v = «y. We always have ay in s * A. As
B+ ar € ®F, the inner product (ak,3) equals —1. By the above, this implies
that both 8 and 3+ ay are in A. But then 8+ oy € ®7 satisfies (g, S+ax) =1
and (B+ ox) —ar € A, 50 B+ oy € s+ A.

From now on, we assume that neither 5 nor 7 is equal to aj. Suppose that
both 3 and v are orthogonal to ay. We saw above that being in s * A means
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that both 8 and v are in A and, because A is closed, 5+ is also in A. But then
3 + +, being orthogonal to ay, also belongs to s * A.

The case remains where at least one of 3 and + is not orthogonal to ;. Suppose
first that (ax, 8) = —1. As B € si * A, by the above, both 8 and 8 + a; are in
A. If 7 is orthogonal to oy, we know from above and from v € s * A that v is in
s * A. Now, as B+ ai,y € Aand Ais closed, alsoy+8+ap € 4. As B,v€ A
and A is closed, also 8+ v is in A. Now (8 + v,ax) = —1, and so by the ahove
B+ ~visin A. We still need to consider the other possibilities for (v, ). As
B+ 7y is a root, (7, o) # —1. Now (8 + v, )} = 0 and we need only show that
B+~ € A. But this follows as A is closed and 8 + ag, v — a € A.

The only case remaining is (3,ax) = 1 and (v,cx) € {0,1}. However, the
latter inner product cannot be 1, for otherwise (£ + v, ai) = 2, contradicting the
fact that 8 + v is a positive root. This means (y,ar) = 0 and, as v € s x A,
we find vy € 4. As (B,az) = 1 and 3 € s * A, we have 8 — ay € A. Since
(B4, ax) = 1, the vector B+ — oy is a positive root. As both §—ay and v are
in A and A is closed, the root 8 — ay + 7 belongs to A. Now as (3 + v,ax) =1
and 3+ v — o) € A, we conclude 8+ v € s x A. ]

LEMMA 4.3: For w € W and i € {1,...,n} satisfying I(r;w) < l(w), and for
each closed subset A of &%, we have ®,, C {a;} Ur;(A) if and only if w <
b= (L(s:9(A)))-

Proof: Since l(r;w) < l(w), the subset ®,, of ®* coincides with {a;} Uri(®,,4).
Hence ®,, C {o;} U r;(A4) if and only if ®,, C A, which, by definition of
g, is equivalent to b(r;w) < g{A). By Proposition 2.1(iii), this is the same
as s;b(r;w) < s;9(A), while, since the left hand side equals b(w), this in turn
amounts to b(w) < L(s;g(A)). Hence the lemma. |

LEMMA 4.4: Suppose that the subsets A and E of ®t are closed and, for some
i€ {l,...,n}, satisfy {a;} CE C {a;} Ur;(A). Then E C s; x A.

Proof: Let 3 € E. We show that § € s; x A. We distinguish cases according to
(ai, B). If (@, B) = 2, then 8 = a; € s; * A by Lemma 4.2.

If (¢, B) = 1, then B = r;(8—a;) with f—a; € A. By Lemma 4.2, this implies
BE s;x A

If (;, 8) = 0, then 8 = r;(8) with 3 € A. By Lemma 4.2, this implies
3 € s; % A.

Finally, suppose (a;, 3) = —1. Then 8 = r;(8 + ;) with 8 + a; € A. Notice
B+a; € Eand E C {o;} Uri(A) imply 8 + a; = r;(8) € r;(4). In particular,
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B+ a; € r(A), so 8+ a; = ri(B) with 8 € A. Since 8,8+ a; € A, Lemma 4.2
implies 3 € s; * A. Hence the lemma. |

PROPOSITION 4.5: The map g: C — Q is Bt equivariant. That is, for allz € B*
and A € C, we have
g(z *x A) = L(xg(4)).

Proof: 1t suffices to prove the assertion for x = s; with 1 < i < n. Write w =
b=lg(s;x A), so b(w) = g(s;* A), and ®,, is the maximal subset of s; x A belonging
to D. Recall from Lemma 4.2 that «; € s; * A. It implies ®,., C s; * A, whence
., C B, s0 r; < w. In other words, I(r;w) < [{w). Since s; x A C {a;}Ur;i(A),
we obtain ®,, C {0y} Ur;(A4). Put w’ = b1 (L(s;9(A))). By Lemma 4.3, ®,, is
the maximal element of D contained in {a;} Ur;(A) and, by Lemma 4.4, so is
®,,. Therefore, by Lemma 2.2(vi), w = w’, proving g(s;xA) = b(w) = L(s;g9(A)).
1

For x € ), write

(19) c.= |J Ua
AeC.g(A)=z
PROPOSITION 4.6: The subsets C, (x € Q) satisfy the following three properties
for each z,y € Q:
(i) C, #0.
(i) CoNCy =0 ifx #y.
(iii) .’L‘Cy C CL(zy).
Proof: (i) Clearly, § # Us,_, - S C,, so C, is nonempty.
(ii) This follows immediately from the definition of C,.

(iii) Given z,y € Q, let A € C be such that y = g(A). Then, by respectively
the definition of *, the definition of C,, and Proposition 4.5(vi),

2Up C Uz C Cg(;t*A) = CL(xy)a
whence Cy, C Cp(zy)- |

In fact, (iii) also holds for each x € B¥, as follows from the following argument
based on induction with respect to I(x). If [(z) > 1 then there exist i € {1,...,n}
and u € B* such that r = s;u and I(z) = 1+ [(u). Then, by the induction
hypothesis, (iii) of the proposition, and Proposition 2.1,

xCy = s;uCy C $iCLuy) € Cr(s;L(uy)) = CL(siuy) = CL(y)-
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PROPOSITION 4.7: Let BT act on a set U in such a way that each element acts
injectively. Suppose we are given subsets C, of U for x € Q) satisfying properties
(i), (ii), and (iii) of Proposition 4.6. Then the action of B* on U is faithful.

Proof: (This is the proof appearing in [6].} Suppose that the elements z and y
of Bt act identically on U. If [(z) +1(y) = 0, then x and y are both the identity
and there is nothing to prove. Suppose, therefore, that I(x) + I(y) > 0. Pick
u € Cy. Then zu € xC; NyCy C Cp(g) N Cpr(y), which implies by Proposition 4.6
that z = L(z) = L(y) for some nontrivial = € Q. This means that there are z’,
y' in Bt such that z = zz’ and y = 23’. But then, as z acts injectively, ' and ¢/
act identically on U, whereas {{z') + I(y') = I(z) + I{y) — 2I(z), so we can finish
by induction on I(z) + I(y). 1

Proofs of Theorems 1.1 and 1.2: Propositions 4.6 and 4.7 with U as in (18)
and C, as in (19), together with Corollary 3.7, give a proof of Theorem 1.2. As
for Theorem 1.1, suppose that M is of finite type. If M is the disjoint union
of diagrams M’ and M”, then B is the direct product of the Artin groups B’,
B" corresponding to M', M", respectively, and so the direct sum of faithful
linear representations of B’ and B” would be a faithful linear representation for
B. Hence, a proof of Theorem 1.1 in the case where M is finite and irreducible
suffices.

By [4], every Artin group B of finite type M such that M has a multiple bond
occurs as a subgroup of an Artin group of finite type without multiple bonds.
Therefore, a proof of Theorem 1.1 for finite irreducible types without multiple
bonds, that is, for types A, D, F, suffices, and this is dealt with by Theorem 1.2.
This ends the proof of the theorems in Section 1.

5. Epilog

As stated before, the Artin groups whose types are spherical irreducible Cox-
eter matrices with multiple bonds occur as subgroups of Artin groups of finite
types without multiple bonds. They occur as fixed subgroups of an automor-
phism group H of B permuting the vertices of M. The natural generators of
this subgroup are the elements [[,. sk of B for E running over the H orbits
on the vertex set of M. It is obvious that these subgroups satisfy the Artin
group relations, but it is harder to establish that every relation they satisfy is a
consequence of these. It may be of interest to know whether the latter can also
be proved by applying Krammer’s methods to the representation of the H fixed
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subgroup of B on the centralizer in V' of H with respect to a suitable action of
HonV.

We are also able to recover Theorem 6.1 from [6]. For this we need
the Charney length function lg on B. It assigns to x € B the smallest
natural number k such that there are elements 1, zo, . .., zx in QUQ ™ for which
r=2x1x9" " Tk.

THEOREM 5.1: Let B, R, V be as in Theorem 1.2 and write p for the linear
representation B — GL(V'). For x € B, consider the Laurent expansion of p(x)
with respect to t:

h
pla) = A, A#£0, An#0,
i=k

where A; is a matrix whose entries are in Z[r*!].
(i) Then ln(x) = max(h — k, h, —k).
(ii) If in addition © € B ~b(wo)B™, then k = 0 and h = lg(x). Here wq is

the longest word in the Coxeter group W corresponding to B.

Proof:  The proof is as in [6] and so we do not include it. The use of Lemmas 3.1
and 3.2 in [6] is replaced by the following corresponding results for p.

There is a linear transformation U € GL(V) whose matrix with respect to
{zs}s has entries in Z[r*!] such that o,UG, = U for each k € {1,...,n}, where
Gk is the matrix o, with ¢ and r replaced by t~! and r~1, respectively. The

matrix U is determined by the following rules involving an index k € {1,...,n}
such that (o, ) = 1:
0 if vy £ B,
1 if y =8,
U _ Tk,ﬁr4 if T = Qg < ﬂa
87 Uy oo if y < B and (ak,v) =1,
T if v < 8 and (ax,7) = 0,

Uytarfop + (171 = 1)Uy g0, ify<Band (ar,7)=-1

This matrix replaces the matrix T(q) in Lemma 3.1 in [6].

In the representation of Theorem 1.2, p(b(wp)) is the multiple of the permuta-
tion matrix 7 by the scalar tr¢+3. Here 7 permutes {z3}g according to the action
of —wg on T and e is the number of positive roots that are not orthogonal to a
given root. In particular e + 3 = 2(n + 1) for A,, 4(n — 1) for D,, 24 for Eg, 36
for E7, and 60 for Fs. Note that this is in accordance with the theorem we are
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proving as k = h = 1. The matrix p(b(w)) replaces the matrix of Lemma 3.2 in
[6]. 1

Just as in [6], this leads to a different proof that p is faithful. Indeed, if x is
in the kernel, we see h = k = 0 and so lq(x) = 0, establishing that « is the unit
element of B.
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